ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Properties of serum albumin in electrolyzed water

Аннотация
Introduction. Electrochemical activation of water controls the physicochemical parameters of aquatic food environment without any reagents. Electrolyzed water affects the properties of macronutrient solutions. The present research studied the effect of anodic and cathodic fractions of electrochemically activated water on protein molecules and their interaction patterns.
Study objects and methods. The study featured bovine serum albumin and its properties in electrochemically activated water with nonstandard redox and acidity values. The aqueous solution of bovine serum albumin was studied by viscometry, UV spectrometry, time-of-flight secondary ion mass spectrometry, and electrophoresis.
Results and discussion. By knowing the interaction patterns of electrochemically activated water and protein molecules, food producers can control the properties of biological raw materials. Bovine serum albumin was studied in metastable fractions of electrochemically activated water obtained in the anode or cathode chamber of an electrochemical reactor. Both fractions of electrochemically activated water appeared to modify the properties of bovine serum albumin. The oxidized fraction of electrochemically activated water (anolyte) converted the protein solution into a more homogeneous molecular composition. The solution of bovine serum albumin in the reduced fraction of electrochemically activated water (catholyte) had an abnormally negative redox potential (–800 mV). The aqueous solution of bovine serum albumin in catholyte retained its initial viscosity for a long time, and its level was lower than in the control sample. This effect was consistent with other physicochemical characteristics of the solution.
Conclusion. The research revealed some patterns that make it possible to apply reagent-free viscosity regulation to protein media in the food industry.
Ключевые слова
Electrochemical activation , water , bovine serum albumin , protein-containing food medium , viscosity , molecular mass spectrometry (ToF-SIMS)
ФИНАНСИРОВАНИЕ
The study was supported by the Russian Science Foundation (RSF), project No. 20-16-00019 “The development of green electrochemistry methods to improve the efficiency of food production: molecular, multicomponent, and cellular biological targets of electrochemically activated aqueous solutions”.
СПИСОК ЛИТЕРАТУРЫ
  1. Davis KF, Downs S, Gephart JA. Towards food supply chain resilience to environmental shocks. Nature Food. 2020;2(1):54–65. https://doi.org/10.1038/s43016-020-00196-3.
  2. Li X, Li X, Liao Y, Zhu G, Yu G. Analysis of residents’ food safety satisfaction from the perspective of income heterogeneity. Scientific Reports. 2021;11(1). https://doi.org/10.1038/s41598-021-85384-2.
  3. Fung F, Wang H-S, Menon S. Food safety in the 21st century. Biomedical Journal. 2018;41(2):88–95. https://doi.org/10.1016/j.bj.2018.03.003.
  4. Prosekov AYu, Ivanova SA. Providing food security in the existing tendencies of population growth and political and economic instability in the world. Foods and Raw Materials. 2016;4(2):201–211. https://doi.org/10.21179/2308-4057-2016-2-201-211.
  5. Socas-Rodríguez B, Álvarez-Rivera G, Valdés A, Ibáñez E, Cifuentes A. Food by-products and food wastes: are they safe enough for their valorization? Trends in Food Science and Technology. 2021;114:133–147. https://doi.org/10.1016/j.tifs.2021.05.002.
  6. Kasza G, Szabó-Bódi B, Lakner Z, Izsó T. Balancing the desire to decrease food waste with requirements of food safety. Trends in Food Science and Technology. 2019;84:74–76. https://doi.org/10.1016/j.tifs.2018.07.019.
  7. Athayde DR, Flores DRM, da Silva JS, Genro ALG, Silva MS, Klein B, et al. Application of electrolyzed water for improving pork meat quality. Food Research International. 2017;100:757–763. https://doi.org/10.1016/j.foodres.2017.08.009.
  8. Qian J, Wang C, Zhuang H, Zhang J, Yan W. Oxidative stress responses of pathogen bacteria in poultry to plasma-activated lactic acid solutions. Food Control. 2020;118. https://doi.org/10.1016/j.foodcont.2020.107355.
  9. Timakova RT, Tikhonov SL, Tikhonova NV, Gorlov IF. Effect of various doses of ionizing radiation on the safety of meat semi-finished products. Foods and Raw Materials. 2018;6(1):120–127. https://doi.org/10.21603/2308-4057-2018-1-120-127.
  10. Cayemitte PE, Gerliani N, Raymond P, Aider M. Study of the impacts of electro-activated solutions of calcium lactate, calcium ascorbate and their equimolar mixture combined with moderate heat treatments on the spores of Bacillus cereus ATCC 14579 under model conditions and in fresh salmon. International Journal of Food Microbiology. 2021;358. https://doi.org/10.1016/j.ijfoodmicro.2021.109285.
  11. Zwietering MH, Jacxsens L, Membré J-M, Nauta M, Peterz M. Relevance of microbial finished product testing in food safety management. Food Control. 2016;60:31–43. https://doi.org/10.1016/j.foodcont.2015.07.002.
  12. Bakhir VM. Ehlektrokhimicheskaya aktivatsiya: izobreteniya, tekhnika, tekhnologiya [Electrochemical activation: inventions, techniques, and technology]. Moscow: VIVA-STAR; 2014. 512 p. (In Russ.).
  13. Shirahata S, Hamasaki T, Teruya K. Advanced research on the health benefit of reduced water. Trends in Food Science and Technology. 2012;23(2):124–131. https://doi.org/10.1016/j.tifs.2011.10.009.
  14. Suvorov OA, Kuznetsov AL, Shank MA, Volozhaninova SYu, Pugachev IO, Pasko OV, et al. Electrochemical and electrostatic decomposition technologies as a means of improving the efficiency and safety of agricultural and water technologies. International Journal of Pharmaceutical Research and Allied Sciences. 2018;7(2):43–52.
  15. Yan P, Daliri EB-M, Oh D-H. New clinical applications of electrolyzed water: A review. Microorganisms. 2021;9(1). https://doi.org/10.3390/microorganisms9010136.
  16. Ignatov I, Gluhchev G, Karadzhov S, Miloshev G, Mosin O. The evaluation of the mathematical model of interaction of electrochemically activated water solutions (anolyte and catholyte) with water. European Reviews of Chemical Research. 2015;4(2):72–86.
  17. Gorbacheva MV, Tarasov VE, Kalmanovich SA, Sapozhnikova AI. Electrochemical activation as a fat rendering technology. Foods and Raw Materials. 2021;9(1):32–42. https://doi.org/10.21603/2308-4057-2021-1-32-42.
  18. Ito H, Kabayma S, Goto K. Effects of electrolyzed hydrogen water ingestion during endurance exercise in a heated environment on body fluid balance and exercise performance. Temperature. 2020;7(3):290–299. https://doi.org/10.1080/23328940.2020.1742056.
  19. Henry M, Chambron J. Physico-chemical, biological and therapeutic characteristics of electrolyzed reduced alkaline water (ERAW). Water. 2013;5(4):2094–2115. https://doi.org/10.3390/w5042094.
  20. Li Z-H, Zhou B, Li X-T, Li S-G. Effect of alkaline electrolyzed water on physicochemical and structural properties of apricot protein isolate. Food Science and Biotechnology. 2019;28(1):15–23. https://doi.org/10.1007/s10068-018-0439-5.
  21. Gerzhova A, Mondor M, Benali M, Aider M. A comparative study between the electro-activation technique and conventional extraction method on the extractability, composition and physicochemical properties of canola protein concentrates and isolates. Food Bioscience. 2015;11:56–71. https://doi.org/10.1016/j.fbio.2015.04.005.
  22. Król Ż, Malik M, Marycz K, Jarmoluk A. Characteristic of gelatine, carrageenan and sodium alginate hydrosols treated by direct electric current. Polymers. 2016;8(8). https://doi.org/10.3390/polym8080275.
  23. Safonov VI, Minyaeva OA. Matematicheskiy analiz funktsionalʹnykh zavisimostey vyazkosti biologicheskikh system [Mathematical analysis of functional dependences of the viscosity of biological systems]. Nauka YuUrGU: 67-aya nauchnaya konferentsiya [Science of South Urals State University: 67th Scientific Conference]; 2015; Chelyabinsk. Chelyabinsk: Izdatelʹskiy tsentr YuUrGU; 2015. p. 455–461. (In Russ.).
  24. Zhang Z, Arrighi V, Campbell L, Lonchamp J, Euston SR. Properties of partially denatured whey protein products 2: Solution flow properties. Food Hydrocolloids. 2016;56:218–226. https://doi.org/10.1016/j.foodhyd.2015.12.012.
  25. Dharmaraj VL, Godfrin PD, Liu Y, Hudson SD. Rheology of clustering protein solutions. Biomicrofluidics. 2016;10(4). https://doi.org/10.1063/1.4955162.
  26. Polianichko AM, Mikhailov NV, Romanov NM, Baranova YuG, Chikhirzhina EV. Intermolecular interactions in solutions of serum albumin. Tsitologiya. 2016;58(9):707–713. (In Russ.).
  27. Pavlova EYu, Dmitrieva IB, Kerzhentsev AA, Drozdov MA, Egorova AR, Rudenko AE, et al. Influence of the concentration of the dispersed phase and the acidity of the medium on the colloidal properties of aqueous solutions of egg albumin and human serum albumin. Butlerov Communications. 2018;53(3):43–48. (In Russ.).
  28. Bujacz A. Structures of bovine, equine and leporine serum albumin. Acta Crystallographica Section D: Biological Crystallography. 2012;68(10):1278–1289. https://doi.org/10.1107/s0907444912027047.
  29. Onwulata CI, Isobe S, Tomasula PM, Cooke PH. Properties of whey protein isolates extruded under acidic and alkaline conditions. Journal of Dairy Science. 2006;89(1):71–81. https://doi.org/10.3168/jds.s0022-0302(06)72070-7.
  30. Graham DJ, Wagner MS, Castner DG. Information from complexity: Challenges of ToF-SIMS data interpretation. Applied Surface Science. 2006;252(19):6860–6868. https://doi.org/10.1016/j.apsusc.2006.02.149.
  31. Graham DJ, Castner DG. Multivariate analysis of ToF-SIMS data from multicomponent systems: The why, when, and how. Biointerphases. 2012;7(1–4). https://doi.org/10.1007/s13758-012-0049-3.
  32. Hong T, Iwashita K, Shiraki K. Viscosity control of protein solution by small solutes: A review. Current Protein and Peptide Science. 2018;19(8):746–758. https://doi.org/10.2174/1389203719666171213114919.
  33. Gregersen SB, Wiking L, Bertelsen KB, Tangsanthatkun J, Pedersen B, Poulsen KR, et al. Viscosity reduction in concentrated protein solutions by hydrodynamic cavitation. International Dairy Journal. 2019;97:1–4. https://doi.org/10.1016/j.idairyj.2019.04.015.
  34. Sheng X, Shu D, Tang X, Zang Y. Effects of slightly acidic electrolyzed water on the microbial quality and shelf life extension of beef during refrigeration. Food Science and Nutrition. 2018;6(7):1975–1981. https://doi.org/10.1002/fsn3.779.
  35. Medina-Gudiño J, Rivera-Garcia A, Santos-Ferro L, Ramirez-Orejel JC, Agredano-Moreno LT, Jimenez-Garcia LF, et al. Analysis of Neutral Electrolyzed Water anti-bacterial activity on contaminated eggshells with Salmonella enterica or Escherichia coli. International Journal of Food Microbiology. 2020;320. https://doi.org/10.1016/j.ijfoodmicro.2020.108538.
  36. Moorman E, Montazeri N, Jaykus L-A. Efficacy of neutral electrolyzed water for inactivation of human norovirus. Applied and Environmental Microbiology. 2017;83(16). https://doi.org/10.1128/aem.00653-17.
  37. Orejel JCR, Cano-Buendía JA. Applications of electrolyzed water as a sanitizer in the food and animal-by products industry. Processes. 2020;8(5). https://doi.org/10.3390/pr8050534.
  38. Lin H-M, Hung Y-C, Deng S-G. Effect of partial replacement of polyphosphate with alkaline electrolyzed water (AEW) on the quality of catfish fillets. Food Control. 2020;112. https://doi.org/10.1016/j.foodcont.2020.107117.
  39. Li Y, Zeng Q-H, Liu G, Peng Z, Wang Y, Zhu Y, et al. Effects of ultrasound-assisted basic electrolyzed water (BEW) extraction on structural and functional properties of Antarctic Krill (Euphausia superba) proteins. Ultrasonics Sonochemistry. 2021;71. https://doi.org/10.1016/j.ultsonch.2020.105364.
  40. Watanabe M, Yamada C, Maeda I, Techapun C, Kuntiya A, Leksawasdi N, et al. Evaluating of quality of rice bran protein concentrate prepared by a combination of isoelectronic precipitation and electrolyzed water treatment. LWT. 2019;99:262–267. https://doi.org/10.1016/j.lwt.2018.09.059.
  41. Gerliani N, Hammami R, Aïder M. Extraction of protein and carbohydrates from soybean meal using acidic and alkaline solutions produced by electro‐activation. Food Science and Nutrition. 2020;8(2):1125–1138. https://doi.org/10.1002/fsn3.1399.
  42. Momen S, Alavi F, Aider M. Alkali-mediated treatments for extraction and functional modification of proteins: Critical and application review. Trends in Food Science and Technology. 2021;110:778–797. https://doi.org/10.1016/j.tifs.2021.02.052.
Как цитировать?
Pogorelov A.G., Ipatova L.G., Pogorelova M.A., Kuznetsov A.L., Suvorov O.A. Properties of serum albumin in electrolyzed water. Foods and Raw Materials, 2022, вып. 10, том. 1, стр. 117-126
DOI
http://doi.org/10.21603/2308-4057-2022-1-117-126
Издатель
Кемеровский государственный университет
https://kemsu.ru
ISSN
2308-4057 (Print) /
2310-9599 (Online)
О журнале