ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Preparation of sodium alginate films incorporated with hydroalcoholic extract of Macrocystis pyrifera

Аннотация
Agroindustry needs novel materials to replace synthetic plastics. This article introduces sodium alginate films with antioxidant properties. The films, which were incorporated with hydroalcoholic extract of Macrocystis pyrifera, were tested on sliced Hass avocados.
The research featured sodium alginate films incorporated with hydroalcoholic extracts of M. pyrifera. Uncoated avocado halves served as control, while the experimental samples were covered with polymer film with or without hydroalcoholic extract. A set of experiments made it possible to evaluate the effect of the extracts on polymeric matrices, release kinetics, and sensory profile of halved Hass avocados.
A greater concentration of hydroalcoholic extracts increased the content of phenolic compounds and their antioxidant activity. As a result, the bands in the carboxylate groups of sodium alginate became more intense. Crystallinity decreased, whereas opacity and mass loss percentage increased, and conglomerates appeared on the surface of the films. These processes fit the Korsmeyer-Peppas kinetic model because they resulted from a combination of diffusion and swelling mechanisms in the films.
The films incorporated with hydroalcoholic extract of M. pyrifera proved to be an effective alternative to traditional fruit wrapping materials.
Ключевые слова
Sodium alginate, films, hydroalcoholic extracts, Macrocystis pyrifera, coating, storage, avocado
Вклад авторов
The authors were equally involved in the written and experimental part of the manuscript and are equally responsible for plagiarism.
ФИНАНСИРОВАНИЕ
The authors are grateful for the financial support provided by the Peruvian government funding through its PROCIENCIA/WORLD BANK program, project code N°01-2018-FONDECYTBM-IADTUM.
СПИСОК ЛИТЕРАТУРЫ
  1. Bahl S, Dolma J, Singh JJ, Sehgal S. Biodegradation of plastics: A state of the art review. Materials Today: Proceedings. 2020;39:31–34. https://doi.org/10.1016/j.matpr.2020.06.096
  2. Shlush E, Davidovich-Pinhas M. Bioplastics for food packaging. Trends in Food Science and Technology. 2022;125:66–80. https://doi.org/10.1016/j.tifs.2022.04.026
  3. Teixeira-Costa BE, Andrade CT. Natural polymers used in edible food packaging – History, function and application trends as a sustainable alternative to synthetic plastic. Polysaccharides. 2022;3(1):32–58. https://doi.org/10.3390/polysaccharides3010002
  4. Ibrahim NI, Shahar FS, Hameed Sultan MT, Shah AU, Azrie Safri SN, Mat Yazik MH. Overview of bioplastics introduction an its applications in product packaging. Coatings. 2021;11(11). https://doi.org/10.3390/coatings11111423
  5. Rosa GP, Tavares WR, Sousa PMC, Pagès AK, Seca AML, Pinto DCGA. Seaweed secondary metabolites with beneficial health effects: An overview of successes in in vivo studies and clinical trials. Marine Drugs. 2020;18(1). https://doi.org/10.3390/md18010008
  6. Tenorio-Rodríguez PA, Esquivel-Solis H, Murillo-Álvarez JI, Ascencio F, Campa-Córdova ÁI, Angulo C. Biosprospecting potential of kelp (Laminariales, Phaeophyceae) from Baja California Peninsula: Phenolic content, antioxidant properties, anti-inflammatory, and cell viability. Journal of Applied Phycology. 2019;31(5):3115–3129. https://doi.org/10.1007/s10811-019-01781-1
  7. Ford L, Stratakos AC, Theodoridou K, Dick JTA, Sheldrake GN, Linton M, et al. Polyphenols from Brown Seaweeds as a potential antimicrobial agent in animal feeds. ACS Omega. 2020;5(16):9093–9103. https://doi.org/10.1021/acsomega.9b03687
  8. Murúa P, Edrada-Ebel R, Muñoz L, Soldatou S, Legrave N, Müller DG, et al. Morphological, genotypic and metabolomic signatures confirm interfamilial hybridization between the ubiquitous kelps Macrocystis (Arthrothamnaceae) and Lessonia (Lessoniaceae). Scientific Reports. 2020;10(1). https://doi.org/10.1038/s41598-020-65137-3
  9. Tapia-Martínez J, Cano-Europa E, Casas-Valdez M, Blas-Valdivia V, Franco-Colin M. Toxicological and therapeutic evaluation of the algae Macrocystis pyrifera (Phaeophyceae) in rodents. Revista de Biologia Marina y Oceanografia. 2020;55(2):119–127. https://doi.org/10.22370/rbmo.2020.55.2.2497
  10. Rodríguez JE, Castro A. Evaluation of polyphenol content and antioxidant activity of the hydroalcoholic extract of Eisenia cokeri m.a. howe. Ciencia e Investigación. 2018;21(1):11–17. (In Spanish).
  11. Beratto-Ramos A, Castillo-Felices RP, Troncoso-León NA, Agurto-Muñoz A, Agurto-Muñoz C. Selection criteria for high-value biomass: Seasonal and morphological variation of polyphenolic content and antioxidant capacity in two brown macroalgae. Journal of Applied Phycology. 2019;31(1):653–664. https://doi.org/10.1007/s10811-018-1528-9
  12. Ore YB, Pichilingue ERL, Valderrama Negron AS. Extraction and characterization of sodium alginate from the macroalgae Macrocystis pyrifera. Revista de la Sociedad Química del Perú. 2020;86(3):276–287. (In Spanish). https://doi.org/10.37761/rsqp.v86i3.300
  13. Layek B, Mandal S. Natural polysaccharides for controlled delivery of oral therapeutics: A recent update. Carbohydrate Polymers. 2020;230. https://doi.org/10.1016/j.carbpol.2019.115617
  14. Santos LG, Silva GFA, Gomes BM, Martins VG. A novel sodium alginate active films functionalized with purple onion peel extract (Allium cepa). Biocatalysis and Agricultural Biotechnology. 2021;35. https://doi.org/10.1016/j.bcab.2021.102096
  15. Azucena Castro-Yobal M, Contreras-Oliva A, Saucedo-Rivalcoba V, Rivera-Armenta JL, Hernández-Ramírez G, Salinas-Ruiz J, et al. Evaluation of physicochemical properties of film-based alginate for food packing applications. E-Polymers. 2021;21(1):82–95. https://doi.org/10.1515/epoly-2021-0011
  16. Silva J, Vanat P, Marques-da-Silva D, Rodrigues JR, Lagoa R. Metal alginates for polyphenol delivery systems: Studies on crosslinking ions and easy-to-use patches for release of protective flavonoids in skin. Bioactive Materials. 2020;5(3):447–457. https://doi.org/10.1016/j.bioactmat.2020.03.012
  17. Solano-Doblado LGa, Alamilla-Beltrán L, Jiménez-Martínez C. Functionalized edible films and coatings. TIP Revista Especializada en Ciencias Químico-Biológicas. 2018;21(2):30–42. (In Spanish). https://doi.org/10.22201/fesz.23958723e.2018.0.153
  18. Higuchi T. Mechanism of sustained action medication. Theoretical analysis of the rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences. 1963;52(12):1145–1149. https://doi.org/10.1002/jps.2600521210
  19. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics. 1983;15(1):25–35. https://doi.org/10.1016/0378-5173(83)90064-9
  20. Vilcanqui Y, Mamani-Apaza LO, Flores M, Ortiz-Viedma J, Romero N, Mariotti-Celis MS, et al. Chemical characterization of brown and red seaweed from Southern Peru, a sustainable source of bioactive and nutraceutical compounds. Agronomy. 2021;11(8). https://doi.org/10.3390/agronomy11081669
  21. Liu X, Yuan W, Zhao R. Extraction of antioxidants from brown algae Ascophyllum nodosum using a binary solvent extraction system. ACS Food Science and Technology. 2021;1(6):1041–1049. https://doi.org/10.1021/acsfoodscitech.1c00053
  22. Cui R, Zhu B, Yan J, Qin Y, Yuan M, Cheng G, Yuan M. Development of a sodium alginate-based active package with controlled release of cinnamaldehyde loaded on halloysite nanotubes. Foods. 2021;10(6). https://doi.org/10.3390/foods10061150
  23. Carlos-Salazar MJ, Valderrama-Negrón AC. Release of anthocyanins from chitosan films cross-linked with sodium tripolyphosphate. Revista de la Sociedad Química del Perú. 2017;83(1):115–125. https://doi.org/10.37761/rsqp.v83i1.108
  24. Castro AJ, Carhuapoma M, Ramos NJ, Juárez JR, Felix LM, Jáuregui JF, et al. Photoprotective effect of Macrocystis pyrifera compared to sunscreens in prevention of skin lesions. Ciencia e Investigación. 2015;18(2):95-98. (In Spanish). https://doi.org/10.15381/ci.v18i2.13617
  25. Ye Y, Zhang X, Deng X, Hao L, Wang W. Modification of alginate hydrogel films for delivering hydrophobic kaempferol. Journal of Nanomaterials. 2019;2019. https://doi.org/10.1155/2019/9170732
  26. Fabra MJ, Falcó I, Randazzo W, Sánchez G, López-Rubio A. Antiviral and antioxidant properties of active alginate edible films containing phenolic extracts. Food Hydrocolloids. 2018;81:96–103. https://doi.org/10.1016/j.foodhyd.2018.02.026
  27. Mutlu B, Farhan M, Kucuk I. T-Shaped microfluidic junction processing of porous alginate-based films and their characteristics. Polymers. 2019;11(9). https://doi.org/10.3390/polym11091386
  28. Zia T, Usman M, Sabir A, Shafiq M, Khan R. Development of inter-polymeric complex of anionic polysaccharides, alginate/k-carrageenan bio-platform for burn dressing. International Journal of Biological Macromolecules. 2020;157:83–95. https://doi.org/10.1016/j.ijbiomac.2020.04.157
  29. Aragón Fernández J, González Santos R, Fuentes Esteves G. Study in vitro of delivery drug from a compound biomaterial. Revista CENIC. Ciencias Químicas. 2010;41:1–8. (In Spanish).
Как цитировать?
Ramos J, Villacrés NA, Cavalheiro ÉTG, Alarcón HA, Valderrama AC. Preparation of sodium alginate films incorporated with hydroalcoholic extract of Macrocystis pyrifera. Foods and Raw Materials. 2023;11(1):64–71. https://doi.org/10.21603/2308-4057-2023-1-553
О журнале