ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Volume 10, Issue 1, 2022

4652
Abstract
Tables and figures
Introduction. Date press cake is a waste product of date juice making that can lead to potentially serious environmental problems if discarded in large amounts in open areas. Therefore, it needs to be utilized. Our study aimed to investigate the possibilities of using date press cake powder to formulate innovative ready-to-eat products – vegan biscuits and vegan protein bars.
Study objects and methods. The food products under study were subjected to a palatability test, a nutritional value evaluation, a texture profile analysis, and a scanning electron microscopy, as well as a microbiological assay performed during 8 months of storage.
Results and discussion. The palatability test showed that the biscuits supplemented with 10% date press cake had the best acceptable preference, compared to control, 5 and 15% date press cake samples. Our innovative vegan protein bar scored highest in overall acceptability, flavor, taste, texture, and willingness to buy, compared to the commercial vegan protein bar. Overall, our study showed that both of our products were safe to consume within 8 months. Additionally, our innovative protein bar and fortified biscuits had high proportions of the recommended dietary allowances for most nutrients for adolescents and athletes, especially for vegetarians.
Conclusion. Date press cake can be successfully used as a food ingredient to produce new formulations of vegan protein bars. Additionally, it can be used as an alternative ingredient to improve the nutritional quality of vegan biscuits.
7592
Abstract
Tables and figures
Introduction. Traditionally, mammalian adipose tissue is divided into white (white adipose tissue – WAT) and brown (brown adipose tissue – BAT). While the functions of WAT are well known as the triglyceride depot, the role of BAT in mammalian physiology has been under close investigation. The first description of the role of BAT in maintaining thermogenesis dates back to 1961. This article offers a review of structural and functional specificity of white, beige and brown adipose tissue.
Results and discussion. The differences and descriptions of adipocytes and their impact on the maintenance of the main functions of the mammalian body are described in this manuscript. In particular, thermogenesis, stress response, obesity, type II diabetes. In addition to WAT and BAT, an intermediate form was also detected in the body – beige fat (BeAT or Brite). The opposite opinions regarding the presence of three types of adipose tissue in the human and animal bodies are presented. Studies on the identification of uncoupling proteins 1 and 3 and their role in the transformation of white fat into beige/brown are considered. Basically, the data on the factors of endogenous and exogenous nature on their formation are given on the example of the human body.
Conclusion. With an abundance of publications on the keywords: “white, brown fat”, these studies, in the overwhelming majority, are devoted to the role of these fats in the formation of human thermogenesis, the assessment of the impact on obesity. Pigs have also been suggested to lack functional BAT, which is a major cause of neonatal death in the swine industry, therefore the focus on investigating role of different types of adipose tissue in pigs seems very promising in order to understand whether there is a compensating mechanism of thermogenesis.
4134
Abstract
Tables and figures
Introduction. The fisheries industry generates large amounts of fish by-products. Their utilization is one of the relative tasks for fish manufacturers. Hydrolysate from fish by-products is regarded as a valuable bioactive protein source for feed production. In this study, we aimed to optimize hydrolysis conditions for the industrial by-products of catfish.
Study objects and methods. We studied the by-products of industrially processed Pangasius hypophthalmus fillet using biochemical methods to find the optimum hydrolysis conditions (enzyme type, enzyme/substrate ratio, temperature, water amount, and time). Then we built a regression model and verified it experimentally.
Results and discussion. According to the Box-Behnken design model, the optimum hydrolysis conditions were determined as 10% of water, 0.48% of SEB-Neutral PL enzyme, 57°C temperature, and 6 h duration. We found no significant differences between the modelled and the verified experimental values. The resulting hydrolysate was rich in nitrogen from amino acids, and its other parameters complied with the current national standards. The microbal and sensory attribites satisfied quality requirements as an animal feed supplement.
Conclusion. The study results are commercially applicable in feed production, providing a solution for the fisheries industry in byproduct treatment.
3887
Abstract
Tables and figures
Introduction. Public healthcare urgently needs new pharmaceuticals – alternative to traditional antibiotics – that pathogens develop no resistance to. Of special interest in this regard are antimicrobial, ribosomally synthesized bacterial peptides or bacteriocins. In this work, we aimed to study the structure and properties of antimicrobial peptides produced by antagonist microorganisms isolated from the natural objects of the Siberian region.
Study objects and methods. The study objects were bacteria isolated from the natural sources of Kuzbass. After culturing bacteria, total protein was precipitated from the culture fluid and separated into fractions by gel permeation HPLC. Their amino acid sequences were determined by MALDI-TOF mass spectrometry. The antibacterial (against Bacillus pumilus and Escherichia coli) and fungicidal (against Aspergillus flavus and Aspergillus niger) properties of the peptides were studied by the disk diffusion method.
Results and discussion. Seven peptides with different amino acid sequences were isolated from the culture fluid of bacteria, five of which had no analogues in the PepBank and Uniprot data banks. The peptide with an amino acid sequence of VMCLARKCSQGLIVKAPLM (2061.66 Da) was homologous to the cysteine membrane protein Giardia lamblia P15, and the peptide with an amino acid sequence of AVPSMKLCIQWSPVRASPCVMLGI (2587.21 Da) showed a homology with the Planctomycetes bacterium I41 peptides. We found antibacterial (against gram-positive and gram-negative bacteria) and fungicidal (against Aspergillus) properties in the peptide fractions.
Conclusion. Antimicrobial peptides produced by bacteria isolated from the natural objects of the Siberian region can be used to create pharmaceuticals as an alternative to traditional antibiotics to treat infectious diseases.
4100
Abstract
Tables and figures
Introduction. Due to the increasing demand for natural and functional products, scientists together with industries are conducting research to improve the nutritional quality of food. One of the ways to enhance the functionality of food is to add fruits or vegetables to their formulations. In this study, we attempted to develop muffins fortified with Dacryodes macrophylla L. fruit as a value-added ingredient.
Study objects and methods. Our study objects included D. macrophylla L. extract and six muffins: three eggless samples and three egg-containing samples. Each group included control and experimental samples. The experimental samples containing 0.5 and 1% of D. macrophylla L. extract instead of wheat flour were evaluated for muffin-making properties. All the samples were analyzed for their physicochemical, antioxidant, and sensory properties, as well as rheological parameters.
Results and discussion. We found that D. macrophylla L. reduced the water activity, color values (L*, a*, b*), and firmness of muffins. It had no significant effect on baking loss, height, moisture, cohesiveness, springiness, gumminess or chewiness, but tended to decrease the specific volume of muffins. However, D. macrophylla L. fruit increased the specific gravity, improved rheology properties, and tended to increase adhesiveness and mineral contents. Na and K varied from 5.93 to 7.75 and 2.88 to 7.35 mg/g, respectively. Furthermore, D. macrophylla L. fruit significantly improved the muffins’ antioxidant activities. According to sensory evaluation, the muffins made with egg solids and 0.5% of D. macrophylla L. fruit had higher sensory scores than the other experimental samples.
Conclusion. D. macrophylla L. fruit is a good potential ingredient for enriching muffins and developing new functional bakery products. However, further research is needed to improve the color reproduction of muffins and determine the optimal concentration of D. macrophylla.
4129
Abstract
Tables and figures
Introduction. Kumquat is a good source of vitamin C, as well as phenolic and flavonoid substances. In this study, we used various solvents to obtain extracts from fresh and lyophilized dried fruits and leaves of kumquat plant, as well as six mutants, to compare their total phenolic and flavonoid contents and antioxidant activities.
Study objects and methods. The total phenolic and flavonoid content was determined by the Folin-Ciocalteu method and the colorimetric method, respectively. The antioxidant capacities of the extracts were determined by commonly used antioxidant tests, such as the DPPH radical scavenging activity, reducing power, and metal chelating activity.
Results and discussion. The total phenolic content of the extracts was in the range of 3705–86 329 mg GAE/g extract. The total amount of flavonoid substance ranged from 5556 to 632 222 mg QUE/g extract. The highest free radical scavenging activity was observed in the kumquat leaves. We also found that the activity of dried fruit was lower than that of fresh fruit. According to our results, the differences in the phenolic contents of the studied plants affected their antioxidant properties. We determined that the extracts with a high phenolic content showed high antioxidant activity. No significant difference was detected between the rootstock kumquat type and its mutants. Finally, we found no chelating activity in the extracts obtained from fresh and lyophilized dried fruits.
Conclusion. Kumquat fruit and its leaves can be considered as functional foods due to phenolic compounds, which are able to neutralize free radicals.
3751
Abstract
Tables and figures
Introduction. Monechma ciliatum L. seeds are rich in proteins, carbohydrates, oils and mineral contents. Researchers have focused on new production development but there is no available data on the impact of processing techniques on the quality of the seeds. Our study aimed to investigate the impact of boiling, roasting, and germination on the composition and nutritional value of Monechma ciliatum (black mahlab) seeds.
Study objects and methods. We analyzed 7 kg of black mahlab seeds purchased from the local market. We applied standard methods used in boiling, roasting, and germination techniques. Proximate analyses were performed using the methods of the Association of Official Analytical Chemists. Minerals were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), and fatty acids were determined by gas chromatography. Tocopherols and amino acids in processed seeds were determined by high-performance liquid chromatography.
Results and discussion. The results showed that the proximate compositions of untreated, boiled, roasted, and germinated mahlab seeds were affected by boiling, roasting, and germination techniques. Most of the nutritional values were enhanced by all the treatments. In particular, all the processing techniques increased the protein content. Boiling and roasting increased the fat content, while boiling and germination increased the fiber content. Tocopherols were higher only in the germinated samples. Amino acids were increased by all the techniques. Minerals were affected by all the techniques, except for Na, which was higher in the germinated sample.
Conclusion. Boiling, roasting, and germination enhanced significantly the chemical composition of Monechma ciliatum seeds, which make them a value ingredient to develop new food products.
4850
Abstract
Tables and figures
Introduction. Mayonnaise is a widely consumed product all over the world. Nowadays, the number of vegetarians, egg allergy cases, and heart diseases are increasing. This makes manufacturers develop alternatives. The research objective was to select the optimal concentration of emulsifiers for egg-free mayonnaise made from virgin coconut oil.
Study objects and methods. We produced 20 egg-free mayonnaise samples with different amounts of emulsifiers. We also determined physicochemical properties of the samples, as well as performed proximate and statistical analyses.
Results and discussion. The response surface methodology made it possible to define such parameters as viscosity, stability, and firmness as affected by the following concentrations: cashew nut protein isolates – 5–15%, xanthan gum – 0–1%, and modified starch – 0–0.5%. The optimal values of emulsifiers were obtained as follows: cashew nut protein isolates – 13 g, xanthan gum – 1.0 g, and modified starch – 0.4 g. The optimized mayonnaise had the following parameters: viscosity – 120.2 mPa·s, stability – 98.7%, and firmness – 25 g. The study revealed no significant differences (P > 0.05) between the actual and predicted data, which confirmed the efficiency of the suggested models.
Conclusion. The obtained low-fat egg-free mayonnaise was relatively similar to the traditional commercial products. However, virgin coconut oil should be emulsified with a combination of cashew nut protein isolates, modified starch, and xanthan gum.
3637
Abstract
Tables and figures
Introduction. Contamination by radiocaesium of edible wild mushrooms after major nuclear accidents is a long-lasting process in some regions of the world. Following greater awareness of radioactive pollution in Asia, particularly after the Fukushima accident, this study investigated the radioactivity of 137Cs and 40K contamination in edible wild mushrooms in China.
Study objects and methods. The objects of the research were edible wild mushrooms collected during 2014 to 2016, from the Inner Mongolian and Yunnan regions of China. To obtain an insight into any environmental impacts to distant regions of mainland Asia, the mushrooms were analyzed for 137Cs activity. In parallel, the natural activity of 40K was also determined and used to estimate the content of total K. The topsoil underneath the mushrooms was also investigated from a few sites in Bayanhushu in Inner Mongolia in 2015.
Results and discussion. The results showed that in 4 to 6 mushrooming seasons after the accident, mushrooms from both regions were only slightly contaminated with 137Cs, which implied negligible consequences. The activity concentrations of 137Cs in dried caps and whole mushrooms in 63 of 70 lots from 26 locations were well below 20 Bq kg–1 dry weight. Two species (Lactarius hygrophoroides L. and Lactarius volemus L.), from Jiulongchi in Yuxi prefecture showed higher 137Cs activities, from 130 ± 5 to 210 ± 13 Bq kg–1 dw in the caps. 40K activities of mushrooms were around two- to three-fold higher. A composite sample of topsoil (0–10 cm layer) from the Bayanhushu site (altitude 920 m a.s.l.) in Inner Mongolia showed 137Cs activity concentration at a low level of 6.8 ± 0.7 Bq kg–1 dw, but it was relatively rich in potassium (40K of 595 ± 41 Bq kg–1 and total K of 17000 ± 1000 mg kg–1 dw).
Conclusion. Wild mushrooms from the Yunnan and Inner Mongolia lands only slightly affected with radioactivity from artificial 137Cs. Lack of 134Cs showed negligible impact from Fukushima fallout. Ionizing radiation dose from 137Cs in potential meals was a fraction of 40K radioactivity. The associated dietary exposure to ionizing irradiation from 137Cs and 40K contained in mushrooms from the regions studied was considered negligible and low, respectively. Mushroom species examined in this study are a potentially good source of dietary potassium.
3778
Abstract
Tables and figures
Introduction. Brassica L. vegetables are rich in fiber, minerals, and bioactive compounds. Lactic fermentation can improve their nutritional value. The goal of this study was to evaluate phytase, calcium, phytic acid, total phenolic content, and antioxidants during spontaneous fermentation of white cabbage, red cabbage, and Chinese cabbage.
Study objects and methods. The research featured samples of water extract, methanol extract, and brine. The procedure involved monitoring lactic bacteria and pH during cabbage fermentation. Diphenyl-1-picrylhydrazyl radical (DPPH) scavenging assay and cupric reducing antioxidant capacity (CUPRAC) assay were used to measure the antioxidant activity and Folin-Ciocalteau method to determine total phenolic content in the water and methanol extracts. In the brine samples, we studied calcium, phytic acid, and phytase activity.
Results and discussion. The samples of white and red cabbage displayed the highest phytase activity on days 5–10 and had a maximal decrease of phytic acid and increase of calcium concentration, while in Chinese cabbage these processes occurred gradually throughout the fermentation. The total phenolic content in the brine and extracts was very similar for all the cultivars throughout the fermentation process. A continuous release from the solid phase to brine could be observed during the first ten days of fermentation. DPPH and CUPRAC assays revealed a similar phenomenon for the total phenolic content. The antioxidant capacity decreased in the water and methanol extracts and increased in the brine. At the end of fermentation, the red cabbage samples demonstrated a significant increase in the total phenolic content and total antioxidant activity, which was less prominent in the Chinese cabbage. The samples of white cabbage, on the contrary, showed a decrease in these parameters.
Conclusion. Fermentation made it possible to increase the concentration of free calcium in white, red, and Chinese cabbages, as well as improve the antioxidant capacity of red and Chinese cabbages.
4573
Abstract
Tables and figures
Introduction. There is a rising concern over food safety caused by an increasing trend towards adulterating fresh cooking oil with used cooking oil in Malaysia. Recent decades have seen more cases of high-quality edible cooking oil adulteration with reused oil, driven by high market demand and profit margins. In this study, we aimed to analyze the properties of vegetable oils and their effect on the quality of fried chicken nuggets.
Study objects and methods. We determined free fatty acid contents and characterized the properties of fresh palm olein, used cooking oil, and adulterated oil. We also compared the sensory quality attributes of chicken nuggets fried in fresh and adulterated oils.
Results and discussion. The content of free fatty acids consistently increased with rising adulteration levels. The FTIR spectral analyses revealed significant differences between fresh, used, and adulterated oils at 3006, 2922, 2853, 2680, 1744, 1654, 987, 968, and 722 cm–1. The oil samples with high adulterant concentrations demonstrated a linear increasing trend in K232 and K270 values, where higher absorbance values indicated severe deterioration in the oil quality. The sensory evaluation showed no significant effect (P > 0.05) of adulteration with used cooking oil on the quality of fried chicken nuggets.
Conclusion. Our findings filled in a gap in the previous studies which only focused on the effects of adulteration on the oil properties. The study also provides valuable information to regulatory authorities on the reliability of quality parameters and modern instruments in edible oil adulteration detection.
3954
Abstract
Tables and figures
Introduction. Electrochemical activation of water controls the physicochemical parameters of aquatic food environment without any reagents. Electrolyzed water affects the properties of macronutrient solutions. The present research studied the effect of anodic and cathodic fractions of electrochemically activated water on protein molecules and their interaction patterns.
Study objects and methods. The study featured bovine serum albumin and its properties in electrochemically activated water with nonstandard redox and acidity values. The aqueous solution of bovine serum albumin was studied by viscometry, UV spectrometry, time-of-flight secondary ion mass spectrometry, and electrophoresis.
Results and discussion. By knowing the interaction patterns of electrochemically activated water and protein molecules, food producers can control the properties of biological raw materials. Bovine serum albumin was studied in metastable fractions of electrochemically activated water obtained in the anode or cathode chamber of an electrochemical reactor. Both fractions of electrochemically activated water appeared to modify the properties of bovine serum albumin. The oxidized fraction of electrochemically activated water (anolyte) converted the protein solution into a more homogeneous molecular composition. The solution of bovine serum albumin in the reduced fraction of electrochemically activated water (catholyte) had an abnormally negative redox potential (–800 mV). The aqueous solution of bovine serum albumin in catholyte retained its initial viscosity for a long time, and its level was lower than in the control sample. This effect was consistent with other physicochemical characteristics of the solution.
Conclusion. The research revealed some patterns that make it possible to apply reagent-free viscosity regulation to protein media in the food industry.
3254
Abstract
Tables and figures
Introduction. Recent studies have shown the benefits of phytolytic enzymes to prepare grain wort in ethanol production. However, there is a lack of data on the effect of phytases and their amount on the conversion of grain polymers, the ionic composition of wort and mash, and the efficiency of yeast generation and ethanol fermentation.
Study objects and methods. Wheat and corn wort samples were treated with a complex of hydrolases, including phytases. Capillary electrophoresis determined the ionic composition of wort and mash. Gas chromatography measured the content of volatile metabolites.
Results and discussion. The key enzymes were phytases and proteases. They improved the conversion of grain polymers and stimulated the growth and metabolism of yeast cells. Their synergism enriched the wort with assimilable nitrogen, phosphorus, and other valuable minerals. In addition, it intensified the growth of the Saccharomyces cerevisiae yeast, increased the rate of carbohydrate consumption, and reduced the formation of side metabolites 1.7–1.9 times, mainly due to higher and aromatic alcohols. The concentration of phosphates remained practically unchanged during the fermentation of grain wort treated with phytases. However, by the end of fermentation, it was 2.4–5.1 times higher than in the mash samples without phytolytic treatment. Finally, we identified a complex of enzymes and optimal amounts of phytases that have a stimulating effect on ethanol fermentation.
Conclusion. Phytases, whether used individually or together with proteases, enriched grain wort with soluble macro- and microelements, improved yeast metabolism, directed ethanol synthesis, and decreased the formation of fermentation by-products.
4015
Abstract
Tables and figures
Introduction. This article presents the development of mathematical models related to the effect of the initial content of dry matter, yeast, and yeast energizer on the fermentation rate, the alcohol content, and the dry matter content in the finished product – mead.
Study objects and methods. The mathematical models were developed by using the response surface methodology (RSM). The effect of yeast, dry matter, and yeast energizer contents were tested in concentration ranges of 150–600 mg/L, 16.3–24.4%, and 140–500 mg/L, respectively. The starting substrates used were honeydew honey and 10% apple juice. Yeast was rehydrated and added in different amounts to obtain required concentrations. Initial dry matter concentrations were measured by a refractometer. At the end of fermentation, oenological parameters of mead, namely dry matter content, pH, and ethanol yield, were determined according to standard methods.
Results and discussion. The statistical estimation of the developed models and the individual model parameters showed that the initial dry matter content had a significant effect on the content of alcohol and dry matter in the final product. While, the initial content of yeast and yeast energizer did not have a significant effect in the tested concentration ranges. In addition, it was proved that the initial content of dry matter and yeast energizer had a significant effect on the fermentation rate, i.e. on the course of fermentation, which was described by a second-degree polynomial.
Conclusion. We determined the optimum content of dry matter (24.4%), amount of yeast (150 mg/L), and concentration of yeast energizer (140 mg/L) in the initial raw material which provided the maximum alcohol yield at a consistent fermentation rate.
2952
Abstract
Tables and figures
Introduction. Agriculture produces a lot of plant and food waste that is highly biodegradable. In order to recycle this waste and use it in the production of new materials, we need to find effective ways to increase their resistance to biodegradation. We aimed to study the biostability of binder-free wood and plant plastics, as well as to find an optimal method of their antiseptic protection.
Study objects and methods. Our objects of study were binder-free plastics based on sawdust, wheat and millet husks. To determine their biostability, we exposed them in active soil for 21 days and analyzed their physical and mechanical properties. Also, we examined the effects of several methods of antiseptic treatment on the samples’ strength, water resistance, and biodegradation.
Results and discussion. All the wood- and plant-based samples showed low biostability. Exposure in active soil caused significant morphological and structural changes, as well as impaired the samples’ physical and mechanical properties, especially those of the plant-based plastics. Their resistance to biodegradation was significantly determined by the type of filler or antiseptic, as well as by the method of antiseptic administration. Whether added to the press mixture or applied to the surface, the antiseptics changed the samples’ physical and mechanical properties. Among the antiseptics used, copper sulfate showed the best effect when introduced directly into the sawdust press mixture. It ensured the lowest decrease in flexural strength, but increased hardness, water absorption, and swelling. The wheat- and millet-based plastics protected with copper sulfate showed an increase in strength indicators, but lower water resistance.
Conclusion. The antiseptic protection of binder-free wood and plant plastics affects a number of their physical and mechanical properties and therefore should take into account the expected conditions for their performance.
5014
Abstract
Tables and figures
Introduction. We studied the use of fermented oat milk to produce sauce and evaluated its properties. The research was motivated by the current demand for so called “plant milk” commonly perceived as an alternative to cow’s milk.
Study objects and methods. The experimental samples were produced from oats-based drinks (1.5 and 3.2% fat) fermented with starter cultures of lactic acid microorganisms following the guidelines for yoghurt production. Apple pectin was used as a thickener. Rheological studies were performed using an RM-1 rotational viscometer and a CT-2 texture analyzer according to the standard methods. Sensory evaluation was based on a scoring scale. Physicochemical parameters were determined according to generally accepted methods.
Results and discussion. Oat milk was fermented to produce a sauce base. Acid accumulation increased throughout fermentation up to 135–137°T. Apple pectin (3%) was added to stabilize the structure and ensure the desired consistency. Higher concentrations of pectin increased the hardness and adhesive strength of the samples from both 1.5 and 3.2% oat milk. The 1.5% sauce scored highest in the sensory evaluation. Its physicochemical indicators met the standard requirements for related fermented milk products. We found the best consistency indicators at a pectin concentration of 3%.
Conclusion. The new fermented sauce based on low fat oat milk (1.5% fat) had high consumer appeal as well as physicochemical, sensory, and rheological characteristics. The sauce can be used by people with lactose intolerance and vegetarians.
3616
Abstract
Tables and figures
Introduction. Gallic acid is a biologically active natural compound with strong antioxidant properties. Gallic acid is highly soluble and stable. It is known to increase the thermal stability of protein. However, its bioavailability is low, but interaction with proteins can solve this problem. Bovine serum albumin can bind various ligands, including polyphenols. The resulting complex of gallic acid and bovine serum albumin can become a promising functional food additive.
Study objects and methods. This research featured in silico molecular modeling of gallic acid and bovine serum albumin using the HyperChem program. The methods of infrared spectrometry, potentiometry, and sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) made it possible to describe the physicochemical profile of the complex.
Results and discussion. The molecular modeling confirmed that hydrophobic interactions were responsible for the chemical bond between gallic acid and bovine serum albumin. The SDS-PAGE test showed that the protein molecule remained intact. The reducing properties of the complex grew as the concentration of gallic acid increased. At 100 mg/L of gallic acid, the reducing properties were 7.8 ± 1.3 mg/L equivalent of gallic acid. At 200 and 300 mg/L, the values reached 15.90 ± 2.65 and 23.30 ± 5.05 mg/L, respectively. The IR spectrometry revealed a significant difference between the samples with different concentrations of gallic acid.
Conclusion. The research managed to predict the properties of the complex of bovine serum albumin and gallic acid during its formation. The resulting complex had the highest reducing properties at 0.69 g of bovine serum albumin and 300 mg of gallic acid. The obtained parameters can be used in the food industry to develop new food additives.
4520
Abstract
Tables and figures
Introduction. A herd of zeboid cattle was created by the Snegiri Scientific and Experimental Farm (Moscow region, Russia) as a result of long-term selection and crossbreeding zebu (Bos indicus L.) with cattle (Bos Taurus L.). These hybrid cows have good physiological parameters, high resistance to diseases, and a significant adaptive potential. The quality of milk produced by zebu cows at different lactation and milking times has not been studied as well as their milking capacity. Therefore, we aimed to assess the variability of specific physicochemical indicators of milk produced by Snegiri’s zeboid dairy herd.
Study objects and methods. The milk of 193 zeboid cows (6–12% of zebu blood) from the Snegiri Farm was analyzed by standard methods for quality indicators such as fat, nonfat milk solids, density, bound water, freezing point, protein, and lactose. Then, we determined how these indicators changed depending on the lactation number and the time of milking (morning/evening). Statistical analysis was applied to process the data.
Results and discussion. Such indicators as nonfat milk solids, density, bound water, freezing point, protein, and lactose of zeboid cow milk were consistent with the normal indicators for raw cow’s milk. Only its fat content (4.39%) exceeded the norm. We found no correlation between the quality of milk and the number of lactations. However, the evening milk was more concentrated, with a significant increase in nonfat milk solids and density, as well as with a lower freezing point.
Conclusion. Zeboid cows, which can be bred in suboptimal conditions, produce milk suitable for dairy products since it has a high fat content regardless of lactation and milking time.
4237
Abstract
Tables and figures
Introduction. Apple juice owes its beneficial properties to various biologically active compounds, e.g. antioxidants. Therefore, food science needs effective methods that would cover all the mechanisms of their effect on human metabolism. However, fruit juice production raises certain safety issues that are associated not only with production risks, but also with some natural components in the raw material. The Allium cepa test seems to be an effective solution to the problem. This plant bioassay has a good correlation tested on mammalian cell cultures.
Study objects and methods. Onion roots (A. cepa) were treated with aqueous solutions of juices and sorbic acid to assess their antioxidant profile. The toxic effects on root tissues were described according to biomass growth, malondialdehyde (MDA) concentration, and proliferative and cytogenetic disorders.
Results and discussion. The study revealed the optimal conditions for the A. cepa assay of the antioxidant properties of apple juice. The antioxidant activity was at its highest when the juice was diluted with water 1:9 and the onion roots were treated with sorbic acid. The lipid oxidation of the A. cepa roots decreased by 43%. A comparative analysis of three different juice brands showed that the difference in their antioxidant profiles was ≤ 3%. As for toxic side effects, the chromosome aberrations increased by six times in all samples.
Conclusion. The research offers a new in vivo method for determining the antioxidant profile of apple juice. Three juice brands proved to have irreversible cytotoxic and genotoxic effects.
5321
Abstract
Tables and figures
Introduction. Today’s feed market offers a variety of new products of plant and animal origin that increases the productivity of young sheep. Using feed supplements can help farmers to fully realize the genetic potential of wool-and-meat genotype sheep.
Study objects and methods. We studied the effect of a whole milk replacer (skimmed powdered milk) and an ORGANIC high-protein feed supplement on the growth of young sheep and the quality of their meat. In particular, we determined the effect of starter feeds on the biochemical and morphological parameters of sheep blood at the Vtoraya Pyatiletka Breeding Farm, Stavropol Krai.
Results and discussion. Substituting starter feeds with a whole milk replacer and an ORGANIC supplement for the standard feed in the diet of sheep aged 0–4 months increased metabolic energy (by 12.5%), crude protein (by 22.4 and 25.5%, respectively), lysine (by 24.8 and 21.4%, respectively), and methionine + cystine (by 31.0%). The starter feeds also led to higher live weight (by 29.6 and 33.7% (Р ≤ 0.001)), absolute and average daily gain (by 24.6 and 29.1% (Р ≤ 0.001)), slaughter weight (by 36.5 and 42.1% (Р ≤ 0.001)), slaughter yield (by 2.50 and 2.96 abs.% (P ≤ 0.05)), and meat marbling (by 3.6 and 11.7%). The number of muscle fibers increased by 2.1 and 3.3%, respectively. Additional profits rose from 1761.5 to 2091.5 rubles per head and the product profitability reached 50.5–57.9%.
Conclusion. The starter feeds containing a milk replacer and an ORGANIC feed supplement proved effective for sheep aged of 0–4 months in the suckling period, ensuring live weight of 39–40 kg and improving meat quality and productivity.