ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Composition and Microstructure Investigation for the Modeling and Classification of Dietary Fiber Derived From Plants

Abstract
Investigation of the composition and microstructure of dietary fiber derived from plants showed that the stabilizers investigated differ with regard to size and shape of the particles and the density of particle distribution. The composition and microstructure of dietary fiber derived from plants have been studied using electron microscopy. Spectrometric profiles of chemical composition have been obtained, and the content of the predominant chemical elements in food microstructure stabilizers has been determined. Some similarity concerning the content of certain chemical elements and the ratio of the contents of different elements has been detected upon the analysis of food structure stabilizers of the same type (carboxymethylcellulose, gum, and sodium pyrophosphate). Mathematical processing of photomicrographs of structure stabilizer samples has been performed, and masks for the assessment of the content of microcavities in the particles of the structure stabilizers investigated have been created.
Keywords
dietary fiber, stabilizer, microstructure, electron microscopy, histogram, carboxymethylcellulose, sodium alginate, sodium pyrophosphate, xanthan gum
REFERENCES
  1. Anisenko, O.V., Stepavenko, O.V., and Shcherbatenko, A.V. Sposoby immobilizatsii ureazy na neorganicheskikh nositelyakh (Methods of urease immobilization on inorganic carriers), Biologiya – nauka XXI veka: trudy VIII Mezhdunarodnoy Pushchinskoy shkoly-konferentsii molodykh uchenykh (Pushchino, 17-21 maya 2001 g.) (Biology in the XXI century: Proceedings of the VIII International Pushchino School and Conference for Young Researchers (Pushchino, May 17-21, 2001)), Pushchino, 2004, p. 249.
  2. Beregova, I.V., Pektiny i karraginany v molochnykh produktakh novogo pokoleniya (Pectins and carrageenans in dairy products of the new generation), Molochnaya promyshlennost´ (Dairy industry), 2006, no. 6, pp. 44–46.
  3. Dankvert, S.A. and Dukin, I.M., Sovremennoe sostoyanie i perspektivy razvitiya molochnogo kompleksa Rossii (Current state and perspectives of development of the dairy industry in Russia), Molochnaya promyshlennost´ (Dairy industry), 2006, no. 1, pp. 10–11.
  4. Kitova, A. E., Kuvichkina, T.N., Arinbasarova, A. Yu., et al., Degradatsiya 2,4-dinitrofenola svobodnymi i immobilizovannymi kletkami Rhodococcus erythropolis HL PM-1 (Degradation of 2,4-dinitrophenol by free and immobilized cells of Rhodococcus erythropolis HL PM-1), Prikladnaya biokhimiya i mikrobiologiya (Applied Biochemistry and Microbiology), 2004, vol. 40, no. 3, pp. 307–311.
  5. Makeeva, I.A., Nauchnyye podkhody k formirovaniyu ponyatii potrebitel´skikh svoystv i kharakteristik molochnykh produktov v period intensivnogo razvitiya ikh assortimenta (Scientific approaches to the formation of concepts of consumer properties and characteristics of dairy products during intensive expansion of the range thereof), Khranenie i pererabotka sel´khozsyr´ya (Storage and processing of agricultural raw materials), 2006, no. 3, pp. 48–53.
  6. Ashin, V.V., RF Patent 2 007 144 734, 2009.
  7. Samuilova, O.K. and Vladimova, L.Ya., Funktsii stabilizatorov i emul´gatorov v molochnykh produktakh (Functions of stabilizers and emulsifiers in dairy products), Pererabotka moloka (Milk processing), 2004, no. 2, p. 22.
  8. Cheng, J., Teply, B.A., Sherifi, I., et al., Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery, Biomaterials, 2007, vol. 28, pp. 869–876.
  9. Sharma, A., Qiang, Y. Antony, J. et al., Dramatic increase in stability and longevity of enzymes attached to monodispersive iron nanoparticles, IEEE Trans. Magn., 2007, vol. 43, pp. 2418–2420.
  10. Gu, H., Xu, K., and Xu, C., Biofunctional magnetic nanoparticles for protein separation and pathogen detection, J. of the American Chemical Society Chem. Commun., 2006, pp. 941–949.
  11. Jeng, J., Lin, M.F., and Cheng, F.Y., Using high-concentration trypsin-immobilized magnetic nanoparticles for rapid in situ protein digestion at elevated temperature, Rapid Commun. Mass Spectrom., 2007, vol. 21, pp. 3060–3068.
  12. Kaushik, A., Khan, R., Solanki, P.R., et al., Iron oxide nanoparticles–chitosan composite based glucose biosensor, Biosens. Bioelectron., 2008, no. 24, pp. 676–683.
  13. Lee, J., Lee, Y., Youn, J.K. et al, Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts, Small, 2008, no. 4, pp. 143–152.
  14. Kim, M.J., An, G.H., and Choa, Y.H., Functionalization of magnetite nanoparticles for protein immobilization, Diffus. Defect Data, Pt. B, 2007, pp. 895–898.
  15. Qiu, J., Peng, H., and Liang, R., Ferrocene modified Fe3O4-SiO2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors, Electrochem. Comm., 2007, no. 9, pp. 2734–2738.
How to quote?
About journal

Download
Contents
Abstract
Keywords
References