ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Improving the nutritional properties of Brassica L. vegetables by spontaneous fermentation

Аннотация
Introduction. Brassica L. vegetables are rich in fiber, minerals, and bioactive compounds. Lactic fermentation can improve their nutritional value. The goal of this study was to evaluate phytase, calcium, phytic acid, total phenolic content, and antioxidants during spontaneous fermentation of white cabbage, red cabbage, and Chinese cabbage.
Study objects and methods. The research featured samples of water extract, methanol extract, and brine. The procedure involved monitoring lactic bacteria and pH during cabbage fermentation. Diphenyl-1-picrylhydrazyl radical (DPPH) scavenging assay and cupric reducing antioxidant capacity (CUPRAC) assay were used to measure the antioxidant activity and Folin-Ciocalteau method to determine total phenolic content in the water and methanol extracts. In the brine samples, we studied calcium, phytic acid, and phytase activity.
Results and discussion. The samples of white and red cabbage displayed the highest phytase activity on days 5–10 and had a maximal decrease of phytic acid and increase of calcium concentration, while in Chinese cabbage these processes occurred gradually throughout the fermentation. The total phenolic content in the brine and extracts was very similar for all the cultivars throughout the fermentation process. A continuous release from the solid phase to brine could be observed during the first ten days of fermentation. DPPH and CUPRAC assays revealed a similar phenomenon for the total phenolic content. The antioxidant capacity decreased in the water and methanol extracts and increased in the brine. At the end of fermentation, the red cabbage samples demonstrated a significant increase in the total phenolic content and total antioxidant activity, which was less prominent in the Chinese cabbage. The samples of white cabbage, on the contrary, showed a decrease in these parameters.
Conclusion. Fermentation made it possible to increase the concentration of free calcium in white, red, and Chinese cabbages, as well as improve the antioxidant capacity of red and Chinese cabbages.
Ключевые слова
Phytase activity , total phenolics , antioxidant activity , lactic acid bacteria , fermentation , cabbage
ФИНАНСИРОВАНИЕ
This work received support from the National University of Patagonia San Juan Bosco (UNPSJB) Exchange project codes. National University of Patagonia San Juan Bosco (UNPSJB)(SCT PI Nº1519), Secretariat of University Policies for the National Ministry of Education (UNPSJB7744), Secretariat of University Policies for the National Ministry of Education Please add: National Promotion Agency Scientific and Technological (PICT 2019-01348), University of Buenos Aires (UBA) (20020170100065BA), and the National Research Council of Argentina, CONICET (11220150100042CO).
СПИСОК ЛИТЕРАТУРЫ
  1. Al-Shehbaz IA, Beilstein MA, Kellogg EA. Systematics and phylogeny of the Brassicaceae (Cruciferae): An overview. Plant Systematics and Evolution. 2006;259(2–4):89–120. https://doi.org/10.1007/s00606-006-0415-z.
  2. Šamec D, Salopek-Sondi B. Cruciferous (Brassicaceae) vegetables. In: Mohammad Nabavi S, Silva AS, editors. Nonvitamin and nonmineral nutritional supplements. Academic Press; 2019. pp. 195–202. https://doi.org/10.1016/b978-0-12-812491-8.00027-8.
  3. Lee H, Oh I-N, Kim J, Jung D, Cuong NP, Kim Y, et al. Phenolic compound profiles and their seasonal variations in new red-phenotype head-forming Chinese cabbages. LWT – Food Science and Technology. 2018;90:433–439. https://doi.org/10.1016/j.lwt.2017.12.056.
  4. Kusznierewicz B, Śmiechowska A, Bartoszek A, Namieśnik J. The effect of heating and fermenting on antioxidant properties of white cabbage. Food Chemistry. 2008;108(3):853–861. https://doi.org/10.1016/j.foodchem.2007.11.049.
  5. Jahangir M, Kim HK, Choi YH, Verpoorte R. Health-affecting compounds in Brassicaceae. Comprehensive Reviews in Food Science and Food Safety. 2009;8(2):31–43. https://doi.org/10.1111/j.1541-4337.2008.00065.x.
  6. Shahidi F, Zhong Y. Measurement of antioxidant activity. Journal of Functional Foods. 2015;18:757–781. https://doi.org/10.1016/j.jff.2015.01.047.
  7. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity. 2009;2(5):270–278. https://doi.org/10.4161/oxim.2.5.9498.
  8. Podsedek A. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT – Food Science and Technology. 2007;40(1):1–11. https://doi.org/10.1016/j.lwt.2005.07.023.
  9. Hur SJ, Lee SY, Kim Y-C, Choi I, Kim G-B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry. 2014;160:346–356. https://doi.org/10.1016/j.foodchem.2014.03.112.
  10. Di Cagno R, Coda R, De Angelis M, Gobbetti M. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology. 2013;33(1):1–10. https:/doi.org/10.1016/j.fm.2012.09.003.
  11. McKie VA, McCleary BV. A novel and rapid colorimetric method for measuring total phosphorus and phytic acid in foods and animal feeds. Journal AOAC International. 2016;99(3):738–743. https://doi.org/10.5740/jaoacint.16-0029.
  12. PLANTS database [Internet] [cited 2021 Aug 10]. Available from: https://plants.usda.gov.
  13. Aires A, Fernandes C, Carvalho R, Bennett RN, Saavedra MJ, Rosa EAS. Seasonal effects on bioactive compounds and antioxidant capacity of six economically important Brassica vegetables. Molecules. 2011;16(8):6816–6832. https://doi.org/10.3390/molecules16086816.
  14. Sun Y-P, Chou C-C, Yu R-C. Antioxidant activity of lactic-fermented chinese cabbage. Food Chemistry. 2009;115(3):912–917. https://doi.org/10.1016/j.foodchem.2008.12.097.
  15. Di Cagno R, Minervini G, Rizzello CG, De Angelis M, Gobbetti M. Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies. Food Microbiology. 2011;28(5):1062–1071. https://doi.org/10.1016/j.fm.2011.02.011.
  16. De Angelisa M, Gallo G, Corbo MR, McSweeney PLH, Faccia M, Giovine M, et al. Phytase activity in sourdough lactic acid bacteria: purification and characterization of phytase from Lactobacillus sanfranciscensis CB1. International Journal Food Microbiology. 2003;87(3):259–270. https://doi.org/10.1016/S0168-1605(03)00072-2.
  17. Agbor GA, Vinson JA, Donnelly PE. Folin-Ciocalteau reagent for polyphenolic assay. International Journal of Food Science, Nutrition and Dietetics. 2014;3(8):147–156. https://doi.org/10.19070/2326-3350-1400028.
  18. Chen Y-C, Sugiyama Y, Abe N, Kuruto-Nima R, Nozawa R, Hirota A. DPPH radical scavenging compounds from Dou-Chi, a soybean fermented food. Bioscience, Biotechnology, and Biochemistry. 2005;69(5):999–1006. https://doi.org/10.1271/bbb.69.999.
  19. Gouda AA, Amin AS. Copper(II)-neocuproine reagent for spectrophotometric determination of captopril in pure form and pharmaceutical formulations. Arabian Journal of Chemistry. 2010;3(3):159–165. https://doi.org/10.1016/j.arabjc.2010.04.004.
  20. Beganović J, Kos B, Leboš Pavunc A, Uroić K, Jokić M, Šušković J. Traditionally produced sauerkraut as source of autochthonous functional starter cultures. Microbiological Research. 2014;169(7–8):623–632. https://doi.org/10.1016/j.micres.2013.09.015.
  21. Gupta RK, Gangoliya SS, Singh NK. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology. 2013;52(2):676–684. https://doi.org/10.1007/s13197-013-0978-y.
  22. Lazarte CE, Carlsson N-G, Almgren A, Sandberg A-S, Granfeldt Y. Phytate, zinc, iron and calcium content of common Bolivian food, and implications for mineral bioavailability. Journal of Food Composition and Analysis. 2015;39:111–119. https://doi.org/10.1016/j.jfca.2014.11.015.
  23. Duong QH, Lapsley KG, Pegg RB. Inositol phosphates: health implications, methods of analysis, and occurrence in plant foods. Journal Food Bioactives. 2018;1(1):41–55. https://doi.org/10.31665/JFB.2018.1126.
  24. Arfaoui L. Dietary plant polyphenols: Effects of food processing on their content and bioavailability. Molecules. 2021; 26(10). https://doi.org/10.3390/molecules26102959.
  25. Tabart J, Pincemail J, Kevers C, Defraigne J-O, Dommes J. Processing effects on antioxidant, glucosinolate, and sulforaphane contents in broccoli and red cabbage. European Food Research and Technology. 2018;244(12):2085–2094. https://doi.org/10.1007/s00217-018-3126-0.
  26. Vicas SI, Teusdea AC, Carbunar M, Socaci SA, Socaciu C. Glucosinolates profile and antioxidant capacity of Romanian Brassica vegetables obtained by organic and conventional agricultural practices. Plant Foods for Human Nutrition. 2013;68(3):313–321. https://doi.org/10.1007/s11130-013-0367-8.
  27. Seong G-U, Hwang I-W, Chung S-K. Antioxidant capacities and polyphenolics of chinese cabbage (Brassica rapa L. ssp. Pekinensis) leaves. Food Chemistry. 2016;199:612–618. https://doi.org/10.1016/j.foodchem.2015.12.066.
  28. Lee N-K, Paik H-D. Bioconversion using lactic acid bacteria: Ginsenosides, GABA, and phenolic compounds. Journal of Microbiology and Biotechnology. 2017;27(5):869–877. https://doi.org/10.4014/jmb.1612.12005.
  29. Upadhyay R, Sehwag S, Singh SP. Antioxidant activity and polyphenol content of Brassica oleracea varieties. International Journal of Vegetable Science. 2016;22(4):353–633. https://doi.org/10.1080/19315260.2015.1048403.
  30. Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektasog˘lu B, et al. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules. 2007;12(7):1496–1547. https://doi.org/10.3390/12071496.
  31. Yadav AK, Singh SV. Osmotic dehydration of fruits and vegetables : a review. Journal of Food Science and Technology. 2014;51(9):1654–1673. https://doi.org/10.1007/s13197-012-0659-2.
Как цитировать?
Parada R.B., Marguet E., Campos C.A., Vallejo M. Improving the nutritional properties of Brassica L. vegetables by spontaneous fermentation. Foods and Raw Materials, 2022, вып. 10, том. 1, стр. 97-105
DOI
http://doi.org/10.21603/2308-4057-2022-1-97-105
Издатель
Кемеровский государственный университет
https://kemsu.ru
ISSN
2308-4057 (Print) /
2310-9599 (Online)
О журнале