ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Bovine serum albumin with gallic acid: Molecular modeling and physicochemical profiling

Аннотация
Introduction. Gallic acid is a biologically active natural compound with strong antioxidant properties. Gallic acid is highly soluble and stable. It is known to increase the thermal stability of protein. However, its bioavailability is low, but interaction with proteins can solve this problem. Bovine serum albumin can bind various ligands, including polyphenols. The resulting complex of gallic acid and bovine serum albumin can become a promising functional food additive. Study objects and methods. This research featured in silico molecular modeling of gallic acid and bovine serum albumin using the HyperChem program. The methods of infrared spectrometry, potentiometry, and sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) made it possible to describe the physicochemical profile of the complex. Results and discussion. The molecular modeling confirmed that hydrophobic interactions were responsible for the chemical bond between gallic acid and bovine serum albumin. The SDS-PAGE test showed that the protein molecule remained intact. The reducing properties of the complex grew as the concentration of gallic acid increased. At 100 mg/L of gallic acid, the reducing properties were 7.8 ± 1.3 mg/L equivalent of gallic acid. At 200 and 300 mg/L, the values reached 15.90 ± 2.65 and 23.30 ± 5.05 mg/L, respectively. The IR spectrometry revealed a significant difference between the samples with different concentrations of gallic acid. Conclusion. The research managed to predict the properties of the complex of bovine serum albumin and gallic acid during its formation. The resulting complex had the highest reducing properties at 0.69 g of bovine serum albumin and 300 mg of gallic acid. The obtained parameters can be used in the food industry to develop new food additives.
Ключевые слова
Serum proteins , SDS-PAGE , IR spectroscopy , amperometric detector , polyphenols
СПИСОК ЛИТЕРАТУРЫ
  1. Prasad AR, Basheer SM, Gupta IR, Elyas KK, Joseph A. Investigation on Bovine Serum Albumin (BSA) binding efficiency and antibacterial activity of ZnO nanoparticles. Materials Chemistry and Physics. 2020;240. https://doi.org/10.1016/j.matchemphys.2019.122115.
  2. Davoodi SH, Shahbazi R, Esmaeili S, Sohrabvandi S, Mortazavian A, Jazayeri S, et al. Health-related aspects of milk proteins. Iranian Journal of Pharmaceutical Research . 2016;15(3):573–591. https://doi.org/10.22037/ijpr.2016.1897.
  3. McCabe BK, Harris PW, Schmidt T, Antille DL, Lee S, Hill A, et al. Bioenergy and bioproducts in the Australian red meat processing industry: A case study. ASABE 2018 Annual International Meeting. 2018. https://doi.org/10.13031/aim.201800980.
  4. Richert ME, García Rey N, Braunschweig B. Charge-controlled surface properties of native and fluorophore-labeled bovine serum albumin at the air-water interface. Journal of Physical Chemistry B. 2018;122(45):10377–10383. https://doi.org/10.1021/acs.jpcb.8b06481.
  5. Arabi SH, Aghelnejad B, Schwieger C, Meister A, Kerth A, Hinderberger D. Serum albumin hydrogels in broad pH and temperature ranges: Characterization of their self-assembled structures and nanoscopic and macroscopic properties. Biomaterials Science. 2018;6(3):478–492. https://doi.org/10.1039/c7bm00820a.
  6. Zhou F, Li G, Huang J. Effect of Chitosan/BSA addition on the physical stability of sunflower oil emulsions. Journal of Food Quality. 2019;2019. https://doi.org/10.1155/2019/6264270.
  7. Sabaa MW, Hanna DH, Abu Elella MH, Mohamed RR. Encapsulation of bovine serum albumin within novel xanthan gum based hydrogel for protein delivery. Materials Science and Engineering C. 2019;94:1044–1055. https://doi.org/10.1016/j.msec.2018.10.040.
  8. Belinskaia DA, Voronina PA, Batalova AA, Goncharov NV. Serum albumin. Encyclopedia. 2020;1(1):65–75. https://doi.org/10.3390/encyclopedia1010009.
  9. Lee W-H, Kim W-H, Cheong H-T, Yang B-K, Park C-K. Effect of alpha-linolenic acid with bovine serum albumin or methyl-beta-cyclodextrin on membrane integrity and oxidative stress of frozen-thawed boar sperm. Development and Reproduction. 2019;23(1):11–19. https://doi.org/10.12717/dr.2019.23.1.011.
  10. Siddiqui S, Ameen F, ur Rehman S, Sarwar T, Tabish M. Studying the interaction of drug/ligand with serum albumin. Journal of Molecular Liquids. 2021;336. https://doi.org/10.1016/j.molliq.2021.116200.
  11. Precupas A, Leonties AR, Neacsu A, Sandu R, Popa VT. Gallic acid influence on bovine serum albumin thermal stability. New Journal of Chemistry. 2019;43(9):3891–3898. https://doi.org/10.1039/c9nj00115h.
  12. Seczyk L, Swieca M, Kapusta I, Gawlik-Dziki U. Protein – phenolic interactions as a factor affecting the physicochemical properties of white bean proteins. Molecules. 2019;24(3). https://doi.org/10.3390/molecules24030408.
  13. Swallah MS, Sun H, Affoh R, Fu H, Yu H. Antioxidant Potential overviews of secondary metabolites (polyphenols) in fruits. International Journal of Food Science. 2020;2020. https://doi.org/10.1155/2020/9081686.
  14. Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The role of polyphenols in human health and food systems: A mini-review. Frontiers in Nutrition. 2018;5. https://doi.org/10.3389/fnut.2018.00087.
  15. Nani A, Murtaza B, Khan AS, Khan NA, Hichami A. Antioxidant and anti-inflammatory potential of polyphenols contained in Mediterranean diet in obesity: Molecular mechanisms. Molecules. 2021;26(4). https://doi.org/10.3390/molecules26040985.
  16. Grosso G, Stepaniak U, Micek A, Kozela M, Stefler D, Bobak M, et al. Dietary polyphenol intake and risk of type 2 diabetes in the Polish arm of the Health, Alcohol and Psychosocial factors in Eastern Europe (HAPIEE) study. British Journal of Nutrition. 2017;118(1):60–68. https://doi.org/10.1017/S0007114517001805.
  17. Cheng Y-C, Sheen J-M, Hu WL, Hung Y-C. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxidative Medicine and Cellular Longevity. 2017;2017. https://doi.org/10.1155/2017/8526438.
  18. Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N. Oxidative stress and inflammation: What polyphenols can do for us? Oxidative Medicine and Cellular Longevity. 2016;2016. https://doi.org/10.1155/2016/7432797.
  19. Malik MA, Sharma HK, Saini CS. Effect of removal of phenolic compounds on structural and thermal properties of sunflower protein isolate. Journal of Food Science and Technology. 2016;53(9):3455–3464. https://doi.org/10.1007/s13197-016-2320-y.
  20. Zhang L, McClements DJ, Wei Z, Wang G, Liu X, Liu F. Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability. Critical Reviews in Food Science and Nutrition. 2020;60(12):2083–2097. https://doi.org/10.1080/10408398.2019.1630358.
  21. Li J-K, Liu X-D, Shen L, Zeng W-M, Qiu G-Z. Natural plant polyphenols for alleviating oxidative damage in man: Current status and future perspectives. Tropical Journal of Pharmaceutical Research. 2016;15(5):1089–1098. https://doi.org/10.4314/tjpr.v15i5.27.
  22. Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, et al. Pharmacological effects of gallic acid in health and disease: A mechanistic review. Iranian Journal of Basic Medical Sciences. 2019;22(3):225–237. https://doi.org/10.22038/ijbms.2019.32806.7897.
  23. Luaibi HM, Alfarhani BF, Hammza RA. Comparative assessment of catechin and gallic acid content in different brands of black and green tea. Journal of Physics: Conference Series. 2019;1294(5). https://doi.org/10.1088/1742-6596/1294/5/052056.
  24. Shao Q, Zhu W. Assessing AMBER force fields for protein folding in an implicit solvent. Physical Chemistry Chemical Physics. 2018;20(10):7206–7216. https://doi.org/10.1039/C7CP08010G.
  25. Polak E, Ribière G. Note sur la convergence de directions conjugu´ee. Rev Francaise Informat Recherche Operationelle. 1969;3(16):35–43.
  26. Bujacz A. Structures of bovine, equine and leporine serum albumin. Acta Crystallographica Section D: Biological Crystallography. 2012;68(10):1278–1289. https://doi.org/10.1107/S0907444912027047.
  27. Hussein HA, Borrel A, Geneix C, Petitjean M, Regad L, Camproux A-C. PockDrug-Server: A new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Research. 2015;43(W1):W436–W442. https://doi.org/10.1093/nar/gkv462.
  28. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling. 2021;61(8):3891–3898. https://doi.org/10.1021/acs.jcim.1c00203.
  29. Gasteiger J, Marsili M. A new model for calculating atomic charges in molecules. Tetrahedron Letters. 1978;19(34):3181–3184. https://doi.org/10.1016/S0040-4039(01)94977-9.
  30. Fehér B, Lyngsø J, Bartók B, Mihály J, Varga Z, Mészáros R, et al. Effect of pH on the conformation of bovine serume albumin - gold bioconjugates. Journal of Molecular Liquids. 2020;309. https://doi.org/10.1016/j.molliq.2020.113065.
  31. Anantharaju PG, Gowda PC, Vimalambike MG, Madhunapantula SV. An overview on the role of dietary phenolics for the treatment of cancers. Nutrition Journal. 2016;15(1). https://doi.org/10.1186/s12937-016-0217-2.
  32. Starodubova AV. Novye podkhody k korrektsii vitaminnoy i mikronutrientnoy nedostatochnosti s uchetom individualʹnykh osobennostey metoboloma cheloveka [New approaches to correcting vitamin and micronutrient deficiencies in humans based on individual metabolome]. Moscow: Federal Research Center of Nutrition, Biotechnology and Food Safety; 2019. 42 p. (In Russ.).
  33. Nadeem M, Anjum FM, Khan MR, Sajjad M, Hussain S, Arshad MS. Electrophoretic characteristics of gluten proteins as influenced by crop year and variety. International Journal of Food Properties. 2016;19(4):897–910. https://doi.org/10.1080/10942912.2015.1045518.
  34. Yashin AYa, Yashin YaI. Analiticheskie vozmozhnosti zhidkostnogo khromatografa “Tsvetyauza” s ehlektrokhimicheskimi detektorami [Analytical capabilities of the liquid chromatograph “Tsvet-Yauza” with electrochemical detectors]. Russian Journal of General Chemistry. 2002;46(4):109–115. (In Russ.).
  35. Ji Y, Yang X, Ji Z, Zhu L, Ma N, Chen D, et al. DFT-Calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components. ACS Omega. 2020;5(15):8572–8578. https://doi.org/10.1021/acsomega.9b04421.
  36. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology. 1982;157(1):105–132. https://doi.org/10.1016/0022-2836(82)90515-0.
  37. Chanphai P, Tajmir-Riahi HA. Tea polyphenols bind serum albumins: A potential application for polyphenol delivery. Food Hydrocolloids. 2019;89:461–467. https://doi.org/10.1016/j.foodhyd.2018.11.008.
  38. Ropiak HM, Lachmann P, Ramsay A, Green RJ, Mueller-Harvey I. Identification of structural features of condensed tannins that affect protein aggregation. PLoS ONE. 2017;12(1). https://doi.org/10.1371/journal.pone.0170768.
Как цитировать?
Ryabtseva S.A., Fedortsov N.M., Budkevich E.V., Evdokimov I.A., Budkevich R.O. Bovine serum albumin with gallic acid: Molecular modeling and physicochemical profiling. Foods and Raw Materials, 2022, вып. 10, том. 1, стр. 163-170
DOI
http://doi.org/10.21603/2308-4057-2022-1-163-170
Издатель
Кемеровский государственный университет
https://kemsu.ru
ISSN
2308-4057 (Print) /
2310-9599 (Online)
О журнале