ISSN 2308-4057 (Печать),
ISSN 2310-9599 (Онлайн)

Экспрессия в клетках Escherichia coli рекомбинантной L-фенилаланин-аммоний-лиазы

Аннотация
Ген pal, кодирующий L-фенилаланин-аммоний-лиазу Rhodosporidium toruloides (GenBank: X12702.1), последовательность которого была оптимизирована, клонирован в состав экспрессирующего вектора pET28a. В результате оптимизации экспрессии, проводившейся по трем параметрам (тип индуктора, время индукции и температура индукции) был получен штамм-продуцент рекомбинантного белка L-фенилаланин-аммоний-лиазы с максимальной продуктивностью, составляющей 35±1% от общего клеточного белка при использовании в качестве индуктора 0,2% лактозы (по Штудиеру), времени индукции 18 ч и температуры культивирования 37°С. В результате определения растворимости L-фенилаланин-аммоний-лиазы было показано, что рекомбинантный белок на 99% находится в нерастворимой фракции. Использование в качестве индуктора не 0,2% лактозы, а 1 мМ ИПТГ не изменило растворимость белка, также не изменилась растворимость белка при культивировании бактерий при различных температурах: 25°С и 37°С.
Ключевые слова
L-фенилаланин-аммоний-лиаза, клонирование, экспрессия, рекомбинантный белок, индукция, L-фенилаланин, фенилкетонурия.
СПИСОК ЛИТЕРАТУРЫ
  1. Sarkissian, C.N., and Gamez, A., Phenylalanine ammonia lyase, enzyme substitution therapy for phenylketonuria, where are we now? Mol. Genet. Metab., 2005, vol. 86, pp. S22–26.
  2. Sarkissian, C.N., Shao, Z., Blain, F., Peevers, R., Su, H., Heft, R., Chang, T.M.S., and Scriver, C.R., A different approach to treatment of phenylketonuria: Phenylalanine degradation with recombinant phenylalanine ammonia lyase, Proc. Natl. Acad. Sci. U.S.A., 1999. vol. 96, no. 5, pp. 2339–2344.
  3. Evans, C.T., Hanna, K., Payne, C., Conrad, D., and Misawa, M., Biotransformation of trans-cinnamic acid to L-phenylalanine: Optimization of reaction conditions using whole yeast cells, Enzyme Microb. Technol., 1987, vol. 9, pp. 417–421.
  4. Baneyx, F., Recombinant protein expression in Escherichia coli, Curr. Opin. Biotechnol., 1999, vol., 10, pp. 411–421.
  5. Hannig, G., and Makrides, S.C., Strategies for optimizing heterologous protein expression in Escherichia coli, Trends in Biotechnology, 1998, vol. 16, pp. 54–60.
  6. Beckwith, J., The operon: An historical account in Escherichia Coli and Salmonella Typhimurium: Cellular and Molecular Biology, Neidhardt, F.C., Ed., Washington, D.C.: American Society for Microbiology, 1987, pp. 1439–1452.
  7. Studier, F.W., Protein production by auto-induction in high density shaking cultures, Protein Expr. Purif., 2005, vol. 41, pp. 207–234.
  8. Kido, M., Yamanaka, K., Mitani, T., Niki, H., Ogura, T., and Hiraga, S., RNase E polypeptides lacking a carboxyl-terminal half suppress a mukB mutation in Escherichia coli, J. Bacteriol., 1996, vol. 178, pp. 3917–3925.
  9. Lopez, P.J., Marchand, I., Joyce, S.A., and Dreyfus, M., The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo, Mol. Microbiol., 1999, vol. 33, pp. 188–199.
  10. Grossman, T.H., Kawasaki, E.S., Punreddy, S.R., and Osburne, M.S., Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability, Gene, 1998, vol. 209, pp. 95–103.
  11. Inada, T., Kimata, K., and Aiba, H., Mechanism responsible for glucose-lactose diauxie in Escherichia coli: challenge to the cAMP model, Genes Cells, 1996, vol. 1, pp. 293–301.
  12. Kimata, K., Takahashi, H., Inada, T., Postma, P., and Aiba, H., cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 12914–12919.
  13. Studier, F.W., and Moffatt, B.A., Use of bacteriophage T7 RNA-polymerase to direct selective high-level expression of cloned genes, J. Mol. Biol., 1986, vol. 189, pp. 113–130.
Как цитировать?
О журнале