Аффилиация
a Women's Christian College, University of Madras, Chennai
Все права защищены ©Priyadarshini и др. Это статья с открытым доступом, распространяемая на условиях международной лицензии Creative Commons Attribution 4.0. (
http://creativecommons.org/licenses/by/4.0/), позволяет другим распространять, перерабатывать, исправлять и развивать произведение, даже в коммерческих целях, при условии указания автора произведения.
Получена 22 Июня, 2024 |
Принята в исправленном виде 03 Сентября, 2024 |
Опубликована 15 Апреля, 2025
Аннотация
The black bean (Phaseolus vulgaris L.), a nutrient-dense legume containing bioactive compounds, has proven to have excellent antioxidant and anti-anflammatory effects. However, the available literature data are diverse and needs summarizing. Therefore, we aimed to systematically review the studies on the antioxidant and anti-inflammatory activities of the black bean.
A literature search following the PRISMA guidelines was carried out for in vitro, in vivo, and human studies assessing the antioxidant and anti-inflammatory effects of the black bean. For this, we used Boolean operators in the following databases: PUBMED, DOAJ, Google Scholar, and WHO’s International Clinical Trials Registry Platform. A total of 411 articles was screened, with 28 duplicate articles removed. Among the remaining 383 articles, only 38 matched the inclusion criteria. The risks of bias were evaluated using the QUIN tool for the in vitro studies and the OHAT tool for the in vivo and human studies.
The seed coat of the black bean exhibited the strongest antioxidant and anti-inflammatory activities compared to the other parts of the seed. While thermal processing negatively impacted the beneficial effects, the retention of the cooking water improved the beans’ antioxidant and anti-inflammatory activities. Germinated and fermented black beans had higher potential than raw and cooked beans. Thus, the black bean can exert a protective effect against inflammatory cytokines.
The antioxidant and anti-inflammatory activities of the black bean depend on which parts of the bean are used and how they are processed. There is a need for further studies and clinical trials to focus on the beneficial role of germinated and fermented black beans in human health.
Ключевые слова
Beans,
legumes,
oxidative stress,
inflammation,
bioactive compounds,
therapeutic application
СПИСОК ЛИТЕРАТУРЫ
- Malta DC, Duncan BB, Schmidt MI, Teixeira R, Ribeiro ALP, Felisbino-Mendes MS, et al. Trends in mortality due to non-communicable diseases in the Brazilian adult population: national and subnational estimates and projections for 2030. Population Health Metrics. 2020;18:16. https://doi.org/10.1186/s12963-020-00216-1
- Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. The Lancet. 2023;402(10397):203–234. https://doi.org/10.1016/S0140-6736(23)01301-6
- Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study. Journal of the American College of Cardiology. 2020;76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010
- Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The global burden of cardiovascular diseases and risk: A compass for future health. Journal of the American College of Cardiology. 2022;80(25):2361–2371. https://doi.org/10.1016/j.jacc.2022.11.005
- Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2024;74(3):229–263. https://doi.org/10.3322/caac.21834
- Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of Toxicology. 2023;97:2499–2574. https://doi.org/10.1007/s00204-023-03562-9
- Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: Harms and benefits for human health. Oxidative Medicine and Cellular Longevity. 2017;2017(1). https://doi.org/10.1155/2017/8416763
- Leyane TS, Jere SW, Houreld NN. Oxidative stress in ageing and chronic degenerative pathologies: Molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. International Journal of Molecular Sciences. 2022;23(13):7273. https://doi.org/10.3390/ijms23137273
- Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nature Medicine. 2019;25:1822–1832. https://doi.org/10.1038/s41591-019-0675-0
- Aleksandrova K, Koelman L, Rodrigues CE. Dietary patterns and biomarkers of oxidative stress and inflammation: A systematic review of observational and intervention studies. Redox Biology. 2021;42:101869. https://doi.org/10.1016/j.redox.2021.101869
- Baker MT, Lu P, Parrella JA, Leggette HR. Consumer acceptance toward functional foods: A scoping review. International Journal of Environmental Research and Public Health. 2022;19(3):1217. https://doi.org/10.3390/ijerph19031217
- Ding Y, Ban Q, Wu Y, Sun Y, Zhou Z, Wang Q, et al. Effect of high hydrostatic pressure on the edible quality, health and safety attributes of plant-based foods represented by cereals and legumes: A review. Critical Reviews in Food Science and Nutrition. 2023;63(20):4636–4654. https://doi.org/10.1080/10408398.2021.2005531
- Sharif HR, Williams PA, Sharif MK, Abbas S, Majeed H, Masamba KG, et al. Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants – A review. Food Hydrocolloids. 2018;76:2–16. https://doi.org/10.1016/j.foodhyd.2017.01.002
- Lukus PK, Doma KM, Duncan AM. The role of pulses in cardiovascular disease risk for adults with diabetes. American Journal of Lifestyle Medicine. 2020;14(6):571–584. https://doi.org/10.1177/1559827620916698
- Angeles JGC, Villanueva JC, Uy LYC, Mercado SMQ, Tsuchiya MCL, Lado JP, et al. Legumes as functional food for cardiovascular disease. Applied Sciences. 2021;11(12):5475. https://doi.org/10.3390/app11125475
- Jaiswal SK, Dakora FD. Seed-coat pigmentation plays a crucial role in partner selection and N2 fixation in legume-root–microbe associations in african soils. Plants. 2024;13(11):1464. https://doi.org/10.3390/plants13111464
- Meenu M, Chen P, Mradula M, Chang SKC, Xu B. New insights into chemical compositions and health-promoting effects of black beans (Phaseolus vulgaris L.). Food Frontiers. 2023;4(3):1019–1038. https://doi.org/10.1002/fft2.246
- Melini F, Lisciani S, Camilli E, Marconi S, Melini V. Effect of cooking on phenolic compound content and in vitro bioaccessibility in sustainable foods: A case study on black beans. Sustainability. 2024;16(1):279. https://doi.org/10.3390/su16010279
- Hernandez-Velazquez I, Sanchez-Tapia M, Ordaz-Nava G, Torres N, Tovar AR, Galvez A. Black bean protein concentrate ameliorates hepatic steatosis by decreasing lipogenesis and increasing fatty acid oxidation in rats fed a high fat-sucrose diet. Food and Function. 2020;11:10341–10350. https://doi.org/10.1039/d0fo02258f
- Beans, black turtle, mature seeds, raw [Internet]. [cited 2024 May 3]. Available from: https://fdc.nal.usda.gov/fdc-app.html#/food-details/175186/nutrients
- Feng Z, Dou W, Alaxi S, Niu Y, Yu L. Modified soluble dietary fiber from black bean coats with its rheological and bile acid binding properties. Food Hydrocolloids. 2017;62:94–101. https://doi.org/10.1016/j.foodhyd.2016.07.032
- Thompson SV, Winham DM, Hutchins AM. Traditional bean and rice meals reduce postprandial glycemia in adults with type 2 diabetes: A cross-over study. Nutrition Journal. 2012;11:23. https://doi.org/10.1186/1475-2891-11-23
- Contreras J, Alcázar-Valle M, Lugo-Cervantes E, Luna-Vital DA, Mojica L. Mexican native black bean anthocyanin-rich extracts modulate biological markers associated with inflammation. Pharmaceuticals. 2023;16(6):874. https://doi.org/10.3390/ph16060874
- Cruz-Bravo RK, Guajardo-Flores D, Gómez-Aldapa CA, Castro-Rosas J, Navarro-Cortez RO, Díaz-Batalla L, et al. Spray-dried microencapsulation of bean coat flour (Phaselus vulgaris, L.) bioactive compounds: Optimization, functional activity, and storage. CYTA – Journal of Food. 2023;21(1):493–501. https://doi.org/10.1080/19476337.2023.2226186
- Mali PS, Kumar P. Optimization of microwave assisted extraction of bioactive compounds from black bean waste and evaluation of its antioxidant and antidiabetic potential in vitro. Food Chemistry Advances. 2023;3:100543. https://doi.org/10.1016/j.focha.2023.100543
- Bramer WM, Rethlefsen ML, Kleijnen J, Franco OH. Optimal database combinations for literature searches in systematic reviews: A prospective exploratory study. Systematic Reviews. 2017;6:245. https://doi.org/10.1186/s13643-017-0644-y
- Sheth VH, Shah NP, Jain R, Bhanushali N, Bhatnagar V. Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: The QUIN. The Journal of Prosthetic Dentistry. 2024;131(6):P1038–1042. https://doi.org/10.1016/j.prosdent.2022.05.019
- Handbook for conducting a literature-based health assessment using ohat approach for systematic review and evidence integration [Internet]. [cited 2024 May 3]. Available from: https://ntp.niehs.nih.gov/whatwestudy/assessments/noncancer/handbook/index.html
- Chen Y, Zheng Z, Ai Z, Zhang Y, Tan CP, Liu Y. Exploring the antioxidant and structural properties of black bean protein hydrolysate and its peptide fractions. Frontiers in Nutrition. 2022;9:884537. https://doi.org/10.3389/fnut.2022.884537
- Liu W, Dun M, Liu X, Zhang G, Ling J. Effects on total phenolic and flavonoid content, antioxidant properties, and angiotensin I-converting enzyme inhibitory activity of beans by solid-state fermentation with Cordyceps militaris. International Journal of Food Properties. 2022;25(1):477–491. https://doi.org/10.3389/fnut.2022.884537
- Flores-Medellín SA, Camacho-Ruiz RM, Guízar-González C, Rivera-Leon EA, Llamas-Covarrubias IM, Mojica L. Protein hydrolysates and phenolic compounds from fermented black beans inhibit markers related to obesity and type-2 diabetes. Legume Science. 2021;3(1):e64. https://doi.org/10.1002/leg3.64
- Abdulrahman BO, Bala M, Bello OM. Evaluation of in vitro antioxidant and antidiabetic potential of extracts from Phaseolus vulgaris L. seeds (Black turtle beans). Functional Food Science. 2021;1(9):23–38. https://doi.org/10.31989/ffs.v1i9.821
- Perez-Hernandez LM, Hernández-Álvarez AJ, Morgan M, Boesch C, Orfila C. Polyphenol bioaccessibility and anti-inflammatory activity of Mexican common beans (Phaseolus vulgaris L.) with diverse seed colour. CYTA – Journal of Food. 2021;19(1):682–690. https://doi.org/10.1080/19476337.2021.1965660
- Rodriguez Madrera R, Campa Negrillo A, Suárez Valles B, Ferreira Fernández JJ. Phenolic content and antioxidant activity in seeds of common bean (Phaseolus vulgaris L.). Foods. 2021;10(4):864. https://doi.org/10.3390/foods10040864
- Hernandez DF, Orozco-Avila I, Lugo-Cervantes E, Mojica L. Black bean (Phaseolus vulgaris L.) phenolic extract exhibits antioxidant and anti-aging potential. Current Developments in Nutrition. 2020;4. https://doi.org/10.1093/cdn/nzaa040_024
- Viktorinová K, Petřeková K, Šimek J, Hartman I, Hertel V. Nutrition and sensory evaluation of germinated legumes. Kvasny Prumysl. 2020;66(3):270–276. https://doi.org/10.18832/kp2019.66.270
- Carbas B, Machado N, Oppolzer D, Ferreira L, Queiroz M, Brites C, et al. Nutrients, antinutrients, phenolic composition, and antioxidant activity of common bean cultivars and their potential for food applications. Antioxidants. 2020;9(2):186. https://doi.org/10.3390/antiox9020186
- Hsieh-Lo M, Castillo-Herrera G, Mojica L. Black bean anthocyanin-rich extract from supercritical and pressurized extraction increased in vitro antidiabetic potential, while having similar storage stability. Foods. 2020;9(5):655. https://doi.org/10.3390/foods9050655
- Teixeira JE, Bragada JA, Bragada JP, Coelho JP, Pinto IG, Reis LP, et al. Structural equation modelling for predicting the relative contribution of each component in the metabolic syndrome status change. International Journal of Environmental Research and Public Health. 2022;19(6):3384. https://doi.org/10.3390/ijerph19063384
- Nkenmeni DC, Kotue TC, Kumar P, Djouhou FM, Ngo SF, Pieme AC, et al. HPLC profiling, in vitro antisickling and antioxidant activities of phenolic compound extracts from black bean seeds (Phaseolus vulgarus L.) used in the management of sickle cell disease in the West Region of Cameroon. International Journal of Food and Nutrition Research. 2019;3:30. https://doi.org/10.28933/ijfnr-2019-08-0105
- Zhang Y, Pechan T, Chang SKC. Antioxidant and angiotensin-I converting enzyme inhibitory activities of phenolic extracts and fractions derived from three phenolic-rich legume varieties. Journal of Functional Foods. 2018;42:289–297. https://doi.org/10.1016/j.jff.2017.12.060
- Herrera-Hernández IM, Armendáriz-Fernández KV, Muñoz-Márquez E, Sida-Arreola JP, Sánchez E. Characterization of bioactive compounds, mineral content and antioxidant capacity in bean varieties grown in semi-arid conditions in Zacatecas, Mexico. Foods. 2018;7(12):199. https://doi.org/10.3390/foods7120199
- Mastura YH, Hasnah H, Dang TN. Total phenolic content and antioxidant capacity of beans: Organic vs inorganic. International Food Research Journal. 2017;24(2):510–517.
- López-Barrios L, Antunes-Ricardo M, Gutiérrez-Uribe JA. Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion. Food Chemistry. 2016;203:417–424. https://doi.org/10.1016/j.foodchem.2016.02.048
- do Evangelho JA, Berrios JJ, Pinto VZ, Antunes MD, Vanier NL, Zavareze ER. Antioxidant activity of black bean (Phaseolus vulgaris L.) protein hydrolysates. Food Science and Technology. 2016;36:23–27. https://doi.org/10.1590/1678-457X.0047
- Xue Z, Wang C, Zhai L, Yu W, Chang H, Kou X, et al. Bioactive compounds and antioxidant activity of mung bean (Vigna radiata L.), soybean (Glycine max L.) and black bean (Phaseolus vulgaris L.) during the germination process. Czech Journal of Food Sciences. 2016;34(1):68–78. https://doi.org/10.17221/434/2015-CJFS
- Ombra MN, d’Acierno A, Nazzaro F, Riccardi R, Spigno P, Zaccardelli M, et al. Phenolic composition and antioxidant and antiproliferative activities of the extracts of twelve common bean (Phaseolus vulgaris L.) endemic ecotypes of southern italy before and after cooking. Oxidative Medicine and Cellular Longevity. 2016;2016(1):1398298. https://doi.org/10.1155/2016/1398298
- Mojica L, Meyer A, Berhow MA, de Mejía EG. Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in vitro inhibition of α-amylase and α-glucosidase while diverse phenolic composition and concentration. Food Research International. 2015;69:38–48. https://doi.org/10.1016/j.foodres.2014.12.007
- Guajardo-Flores D, Serna-Saldívar SO, Gutiérrez-Uribe JA. Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chemistry. 2013;141(2):1497–1503. https://doi.org/10.1016/j.foodchem.2013.04.010
- Xu B, Chang SKC. Comparative study on antiproliferation properties and cellular antioxidant activities of commonly consumed food legumes against nine human cancer cell lines. Food Chemistry. 2012;134(3):1287–1296. https://doi.org/10.1016/j.foodchem.2012.02.212
- Golam Masum Akond ASM, Khandaker L, Berthold J, Gates L, Peters K, Delong H, et al. Anthocyanin, total polyphenols and antioxidant activity of common bean. American Journal of Food Technology. 2011;6(5):385–394. https://doi.org/10.3923/ajft.2011.385.394
- Xu B, Chang SKC. Reduction of antiproliferative capacities, cell-based antioxidant capacities and phytochemical contents of common beans and soybeans upon thermal processing. Food Chemistry. 2011;129(3):974–981. https://doi.org/10.1016/j.foodchem.2011.05.057
- Hernández-Salazar M, Osorio-Diaz P, Loarca-Piña G, Reynoso-Camacho R, Tovar J, Bello-Pérez LA. In vitro fermentability and antioxidant capacity of the indigestible fraction of cooked black beans (Phaseolus vulgaris L.), lentils (Lens culinaris L.) and chickpeas (Cicer arietinum L.). Journal of the Science of Food and Agriculture. 2010;90(9):1417–1422. https://doi.org/10.1002/jsfa.3954
- Silva-Cristobal L, Osorio-Díaz P, Tovar J, Bello-Pérez LA. Chemical composition, carbohydrate digestibility, and antioxidant capacity of cooked black bean, chickpea, and lentil Mexican varieties. CYTA – Journal of Food. 2010;8(1):7–14. https://doi.org/10.1080/19476330903119218
- Oomah BD, Corbé A, Balasubramanian P. Antioxidant and anti-inflammatory activities of bean (Phaseolus vulgaris L.) hulls. Journal of Agricultural and Food Chemistry. 2010;58(14):8225–8230. https://doi.org/10.1021/jf1011193
- Xu B, Chang SKC. Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. Journal of Agricultural and Food Chemistry. 2009;57(11):4754–4764. https://doi.org/10.1021/jf900695s
- Dong M, He X, Rui HL. Phytochemicals of black bean seed coats: Isolation, structure elucidation, and their antiproliferative and antioxidative activities. Journal of Agricultural and Food Chemistry. 2007;55(15):6044–6051. https://doi.org/10.1021/jf070706d
- Tan Y, Tam CC, Meng S, Zhang Y, Alves P, Yokoyama W. Cooked black turtle beans ameliorate insulin resistance and restore gut microbiota in C57BL/6J mice on high-fat diets. Foods. 2021;10(8):1691. https://doi.org/10.3390/foods10081691
- Monk JM, Wu W, Hutchinson AL, Pauls P, Robinson LE, Power KA. Navy and black bean supplementation attenuates colitis-associated inflammation and colonic epithelial damage. The Journal of Nutritional Biochemistry. 2018;56:215–223. https://doi.org/10.1016/j.jnutbio.2018.02.013
- Wang J-Y, Zhu C, Qian T-W, Guo H, Wang D-D, Zhang F, et al. Extracts of black bean peel and pomegranate peel ameliorate oxidative stress-induced hyperglycemia in mice. Experimental and Therapeutic Medicine. 2015;9(1):43–48. https://doi.org/10.3892/etm.2014.2040
- Zhang C, Monk JM, Lu JT, Zarepoor L, Wu W, Liu R, et al. Cooked navy and black bean diets improve biomarkers of colon health and reduce inflammation during colitis. British Journal of Nutrition. 2014;111(9):1549–1563. https://doi.org/10.1017/S0007114513004352
- Reverri EJ, Randolph JM, Steinberg FM, Tissa Kappagoda C, Edirisinghe I, Burton-Freeman BM. Black beans, fiber, and antioxidant capacity pilot study: Examination of whole foods vs. functional components on postprandial metabolic, oxidative stress, and inflammation in adults with metabolic syndrome. Nutrients. 2015;7(8):6139–6154. https://doi.org/10.3390/nu7085273
- Abdulrahman BO, Bala M, Bello OM. Bioactive compounds of black bean (Phaseolus vulgaris L.). In: Murthy HN, Paek K-Y, editors. Bioactive compounds in underutilized vegetables and legumes. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-44578-2_38-1
- Teixeira-Guedes CI, Oppolzer D, Barros AI, Pereira-Wilson C. Impact of cooking method on phenolic composition and antioxidant potential of four varieties of Phaseolus vulgaris L. and Glycine max L. LWT. 2019;103:238–246. https://doi.org/10.1016/j.lwt.2019.01.010
- Xu B, Chang SKC. Effect of soaking, boiling, and steaming on total phenolic contentand antioxidant activities of cool season food legumes. Food Chemistry. 2008;110(1):1–13. https://doi.org/10.1016/j.foodchem.2008.01.045
- Acito M, Fatigoni C, Villarini M, Moretti M. Effect of cooking and domestic storage on the antioxidant activity of Lenticchia di Castelluccio di Norcia, an Italian PGI lentil landrace. International Journal of Environmental Research and Public Health. 2023;20(3):2585. https://doi.org/10.3390/ijerph20032585
- Toor BS, Kaur A, Sahota PP, Kaur J. Antioxidant potential, antinutrients, mineral composition and FTIR spectra of legumes fermented with Rhizopus oligosporus. Food Technology and Biotechnology. 2021;59(4):530–542. https://doi.org/10.17113/ftb.59.04.21.7319
- Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2(12):1231–1246. https://doi.org/10.3390/nu2121231
- Sánchez-Tapia M, Hernández-Velázquez I, Pichardo-Ontiveros E, Granados-Portillo O, Gálvez A, Tovar AR, et al. Consumption of cooked black beans stimulates a cluster of some clostridia class bacteria decreasing inflammatory response and improving insulin sensitivity. Nutrients. 2020;12(4):1182. https://doi.org/10.3390/nu12041182
- Peng L, Guo F, Pei M, Tsao R, Wang X, Jiang L, et al. Anti-inflammatory effect of lentil hull (Lens culinaris) extract via MAPK/NF-κB signaling pathways and effects of digestive products on intestinal barrier and inflammation in Caco-2 and Raw264.7 co-culture. Journal of Functional Foods. 2022;92:105044. https://doi.org/10.1016/j.jff.2022.105044
- Rivera-Jiménez J, Berraquero-García C, Pérez-Gálvez R, García-Moreno PJ, Espejo-Carpio FJ, Guadix A, et al. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: Sources, structural features and modulation mechanisms. Food and Function. 2022;13(24):12510–12540. https://doi.org/10.1039/D2FO02223K