ISSN 2308-4057 (Печать),
ISSN 2310-9599 (Онлайн)

Synergistic interaction between Azotobacter and Pseudomonas bacteria in a growth-stimulating consortium

Аннотация
Intensifying agricultural production involves an active use of agrochemicals, which results in disrupted ecological balance and poor product quality. To address this issue, we need to introduce biologized science-intensive technologies. Bacteria belonging to the genera Azotobacter and Pseudomonas have complex growth-stimulating properties and therefore can be used as a bioproduct to increase plant productivity. We aimed to create a growth-stimulating consortium based on the strains of the genera Azotobacter and Pseudomonas, as well as to select optimal cultivation parameters that provide the best synergistic effect. We studied strains Azotobacter chroococcum B-4148, Azotobacter vinelandii B-932, and Pseudomonas chlororaphis subsp. aurantiaca B-548, which were obtained from the National Bioresource Center “All-Russian Collection of Industrial Microorganisms” of Kurchatov Institute. All the test strains solubilized phosphates and produced ACC deaminase. They synthesized 0.98–1.33 mg/mL of gibberellic acid and produced 37.95–49.55% of siderophores. Their nitrogen-fixing capacity ranged from 49.23 to 151.22 μg/mL. The strain had high antagonistic activity against phytopathogens. In particular, A. chroococcum B-4148 and A. vinelandii B-932 inhibited the growth of Fusarium graminearum, Bipolaris sorokiniana, and Erwinia rhapontici, while P. chlororaphis subsp. aurantiaca B-548 exhibited antagonism against F. graminearum and B. sorokiniana. Since all the test strains were biologically compatible, they were used to create several consortia. The greatest synergistic effect was achieved by Consortium No. 6 that contained the strains B-4148, B-932, and B-548 in a ratio of 1:3:1. The optimal nutrient medium for this consortium contained 25.0 g/L of Luria-Bertani medium, 8.0 g/L molasses, 0.1 g/L magnesium sulfate heptahydrate, and 0.01 g/L of aqueous manganese sulfate. The optimal cultivation temperature was 28°C. The microbial consortium created in our study has high potential for application in agricultural practice. Further research will focus on its effect on the growth and development of plants, in particular cereal crops, under in vitro conditions and in field experiments.
Ключевые слова
Biological preparations, sustainable agriculture, growth-stimulating microorganisms, microbial consortium, biocompatibility, phytohormones, siderophores
ФИНАНСИРОВАНИЕ
This study was part of the state project “Studying the potential of growth-stimulating bacteria to increase the agronomic biofortification of wheat” (FZSR-2024-0009).
СПИСОК ЛИТЕРАТУРЫ
  1. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, et al. Food security: The challenge of feeding 9 billion people. Science. 2010;327(5967):812–818. https://doi.org/10.1126/science.1185383
  2. Prosekov AYu. Modern aspects of food production. Kemerovo: Kemerovo Institute of Food Science and Technology; 2005. 380 p. (In Russ.). https://www.elibrary.ru/ZRZGCT
  3. Mardani S, Tabatabaei SH, Pessarakli M, Zareabyaneh H. Physiological responses of pepper plant (Capsicum annuum L.) to drought stress. Journal of Plant Nutrition. 2017;40(10):1532–1464. https://doi.org/10.1080/01904167.2016.1269342
  4. Dhar SK, Kaur J, Singh GB, Chauhan A, Tamang J, Lakhara N, et al. Novel Bacillus and Prestia isolates from Dwarf century plant enhance crop yield and salinity tolerance. Scientific Reports. 2024,14:14645. https://doi.org/10.1038/s41598-024-65632-x
  5. Asyakina LK, Vorob'eva EE, Proskuryakova LA, Zharko MYu. Evaluating extremophilic microorganisms in industrial regions. Foods and Raw Materials. 2023;11(1):162–171. https://doi.org/10.21603/2308-4057-2023-1-556
  6. Mozumder P, Berrens RP. Inorganic fertilizer use and biodiversity risk: An empirical investigation. Ecological Economics. 2007;62(3–4):538–543. https://doi.org/10.1016/j.ecolecon.2006.07.016
  7. Asyakina LK, Serazetdinova YuR, Frolova AS, Fotina NV, Neverova OA, Petrov AN. Antagonistic activity of extremophilic bacteria against phytopathogens in agricultural crops. Food Processing: Techniques and Technology. 2023;53(3):565–575. https://doi.org/10.21603/2074-9414-2023-3-2457
  8. Fonte SJ, Yeboah E, Ofori P, Quansah GW, Vanlauwe B, Six J. Fertilizer and residue quality effects on organic matter stabilization in soil aggregates. Soil Science Society of America Journal. 2009;73(3):961–966. https://doi.org/10.2136/sssaj2008.0204
  9. Mitra B, Chowdhury AR, Dey P, Hazra KK, Sinha AK, Hossain A, et al. Use of agrochemicals in agriculture: Alarming issues and solutions. In: Bhatt R, Meena RS, Hossain A, editors. Input use efficiency for food and environmental security. Singapore: Springer; 2021. pp. 85–122. https://doi.org/10.1007/978-981-16-5199-1_4
  10. Faskhutdinova ER, Fotina NV, Neverova OA, Golubtsova YuV, Mudgal G, Asyakina LK, et al. Extremophilic bacteria as biofertilizer for agricultural wheat. Foods and Raw Materials. 2024;12(2):348–360. https://doi.org/10.21603/2308-4057-2024-2-613
  11. Massah J, Azadegan B. Effect of chemical fertilizers on soil compaction and degradation. Agricultural Mechanization in Asia, Africa and Latin America. 2016;47(1):44–50.
  12. Aloo BN, Mbega ER, Makumba BA, Tumuhairwe JB. Effects of agrochemicals on the beneficial plant rhizobacteria in agricultural systems. Environmental Science and Pollution Research. 2021;28:60406–60424. https://doi.org/10.1007/s11356-021-16191-5
  13. Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, et al. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome. 2019;7:143. https://doi.org/10.1186/s40168-019-0757-8
  14. Wang J, Li Q, Shen C, Yang F, Wang J, Ge Y. Significant dose effects of fertilizers on soil diazotrophic diversity, community composition, and assembly processes in a long‐term paddy field fertilization experiment. Land Degradation and Development. 2020;32. https://doi.org/10.1002/ldr.3736
  15. Liao H, Li Y, Yao H. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates. Journal of Soils and Sediments. 2018;18:1076–1086. https://doi.org/10.1007/s11368-017-1836-8
  16. Fotina NV, Serazetdinova YuR, Kolpakova DE, Asyakina LK, Atuchin VV, Alotaibi KM, et al. Enhancement of wheat growth by plant growth-stimulating bacteria during phytopathogenic inhibition. Biocatalysis and Agricultural Biotechnology. 2024;60:103294. https://doi.org/10.1016/j.bcab.2024.103294
  17. Abbas Z, Akmal M, Khan KS, Hassan F. Effect of buctril super (Bromoxynil) herbicide on soil microbial biomass and bacterial population. Brazilian Archives of Biology and Technology. 2014;57(1):9–14. https://doi.org/10.1590/S1516-89132014000100002
  18. Cycoń M, Piotrowska-Seget Z, Kozdrój J. Dehydrogenase activity as an indicator of different microbial responses to pesticide-treated soils. Chemistry and Ecology. 2010;26(4):243–250. https://doi.org/10.1080/02757540.2010.495062
  19. Carr JF, Gregory ST, Dahlberg AE. Severity of the streptomycin resistance and streptomycin dependence phenotypes of ribosomal protein S12 of Thermus thermophilus depends on the identity of highly conserved amino acid residues. Journal of Bacteriology. 2005;187(10):3548–3550. https://doi.org/10.1128/JB.187.10.3548-3550.2005
  20. Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, et al. Impact of agrochemicals on soil microbiota and management: A review. Land. 2020;9(2):34. https://doi.org/10.3390/land9020034
  21. Grewal AS, Singla A, Kamboj P, Dua JS. Pesticide residues in food grains, vegetables and fruits: A hazard to human health. Journal of Medicinal Chemistry and Toxicology. 2017;2(1):40–46. https://doi.org/10.15436/2575-808X.17.1355
  22. Kim K-H, Kabir E, Jahan SA. Exposure to pesticides and the associated human health effects. Science of The Total Environment. 2017;575:525–535. https://doi.org/10.1016/j.scitotenv.2016.09.009
  23. Kalyabina VP, Esimbekova EN, Kopylova KV, Kratasyuk VA. Pesticides: formulants, distribution pathways and effects on human health – A review. Toxicology Reports. 2021;8:1179–1192. https://doi.org/10.1016/j.toxrep.2021.06.004
  24. Faskhutdinova ER, Fotina NV, Neverova OA, Golubtsova YuV, Mudgal G, Asyakina LK, et al. Extremophilic bacteria as biofertilizer for agricultural wheat. Foods and Raw Materials. 2024;12(2):348–360. https://doi.org/10.21603/2308-4057-2024-2-613
  25. García-Fraile P, Menéndez E, Rivas R. Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioengineering. 2015;2(3):183–205. https://doi.org/10.3934/bioeng.2015.3.183
  26. Asyakina LK, Dyshlyuk LS, Prosekov AYu. Reclamation of post-technological landscapes: international experience. Food Processing: Techniques and Technology. 2021;51(4):805–818. (In Russ.). https://doi.org/10.21603/2074-9414-2021-4-805-818; https://www.elibrary.ru/SANMZI
  27. Andrade MMM, Stamford NP, Santos CERS, Freitas ADS, Sousa CA, Lira Junior MA. Effects of biofertilizer with diazotrophic bacteria and mycorrhizal fungi in soil attribute, cowpea nodulation yield and nutrient uptake in field conditions. Scientia Horticulturae. 2013;162:374–379. https://doi.org/10.1016/j.scienta.2013.08.019
  28. Zvinavashe AT, Lim E, Sun H, Marelli B. A bioinspired approach to engineer seed microenvironment to boost germination and mitigate soil salinity. Proceedings of the National Academy of Sciences. 2019;116(51):25555–25561. https://doi.org/10.1073/pnas.1915902116
  29. Aquilanti L, Favilli F, Clementi F. Comparison of different strategies for isolation and preliminary identification of Azotobacter from soil samples. Soil Biology and Biochemistry. 2004;36(9):1475–1483. https://doi.org/10.1016/j.soilbio.2004.04.024
  30. Ansari RA, Rizvi R, Sumbul A, Mahmood I. PGPR: Current vogue in sustainable crop production. In: Kumar V, Kumar M, Sharma S, Prasad R, editors. Probiotics and plant health. Singapore: Springer; 2017. pp. 455–472. https://doi.org/10.1007/978-981-10-3473-2_21
  31. Kurrey DK, Sharma R, Lahre MK, Kurrey RL. Effect of Azotobacter on physio-chemical characteristics of soil in onion field. The Pharma Innovation. 2018;7(2):108–113.
  32. Prajapati K, Yami KD, Singh A. Plant growth promotional effect of Azotobacter chroococcum, Piriformospora indica and vermicompost on rice plant. Nepal Journal of Science and Technology. 2008;9:85–90. https://doi.org/10.3126/njst.v9i0.3170
  33. Hakeem KR, Sabir M, Ozturk M, Akhtar MS, Ibrahim FH. Nitrate and nitrogen oxides: Sources, health effects and their remediation. In: De Voogt P, editor. Reviews of environmental contamination and toxicology. Volume 242. Cham: Springer; 2016. pp. 183–217. https://doi.org/10.1007/398_2016_11
  34. Wani SA, Chand S, Wani MA, Ramzan M, Hakeem KR. Azotobacter chroococcum – A potential biofertilizer in agriculture: An overview. In: Hakeem KR, Akhtar J, Sabir M, editors. Soil science: Agricultural and environmental prospectives. Cham: Springer; 2016. pp. 333–348. https://doi.org/10.1007/978-3-319-34451-5_15
  35. Romero-Perdomo F, Abril J, Camelo M, Moreno-Galván A, Pastrana I, Rojas-Tapias D, et al. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Revista Argentina de Microbiología. 2017;49(4):377–383. https://doi.org/10.1016/j.ram.2017.04.006
  36. Arora M, Saxena P, Abdin MZ, Varma A. Interaction between Piriformospora indica and Azotobacter chroococcum governs better plant physiological and biochemical parameters in Artemisia annua L. plants grown under in vitro conditions. Symbiosis. 2018;75:103–112. https://doi.org/10.1007/s13199-017-0519-y
  37. Singh A, Maji S, Kumar S. Effect of biofertilizers on yield and biomolecules of anti-cancerous vegetable broccoli. International Journal of Bio-Resource and Stress Management. 2014;5:262–268. https://doi.org/10.5958/0976-4038.2014.00565.X
  38. Baars O, Zhang X, Morel FMM, Seyedsayamdost MR. The siderophore metabolome of Azotobacter vinelandii. Applied and Environmental Microbiology. 2016;82(1):27–39. https://doi.org/10.1128/AEM.03160-15
  39. Hayat R, Ali S, Amara U, Khalid R, Ahmed I. Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology. 2010;60:579–598. https://doi.org/10.1007/s13213-010-0117-1
  40. Zayadan BK, Matorin DN, Baimakhanova GB, Bolathan K, Oraz GD, Sadanov AK. Promising microbial consortia for producing biofertilizers for rice fields. Microbiology. 2014;83:391–397. https://doi.org/10.1134/S0026261714040171
  41. Suryatmana P, Setiawati MR, Hindersah R, Satria A, Fitriatin BN. The potential of the consortium (Azotobacter spp. and Phosphate solubilizing bacteria) in increasing plant n uptake, plant nitrogen content, Azotobacter spp. population and lettuce (Lactuca sativa L) crop yeald. International Journal of Agriculture, Environment and Bioresearch. 2021;06(01):77–86. https://doi.org/10.35410/IJAEB.2021.5604
  42. Singh A, Jain A, Sarma B, Upadhyay R, Singh HB. Rhizosphere microbes facilitate redox homeostasis in Cicer arietinum against biotic stress. Annals of Applied Biology. 2013;163:33–46. https://doi.org/10.1111/aab.12030
  43. Mehmood N, Saeed M, Zafarullah S, Hyder S, Rizvi ZF, Gondal AS, et al. Multifaceted impacts of plant-beneficial Pseudomonas spp. in managing various plant diseases and crop yield improvement. ACS Omega. 2023;8(25):22296–22315. https://doi.org/10.1021/acsomega.3c00870
  44. Zhang H, Zheng D, Hu C, Cheng W, Lei P, Xu H, et al. Certain tomato root exudates induced by Pseudomonas stutzeri NRCB010 enhance its rhizosphere colonization capability. Metabolites. 2023;13(5):664. https://doi.org/10.3390/metabo13050664
  45. Ortiz-Castro R, Campos-García J, López-Bucio J. Pseudomonas putida and Pseudomonas fluorescens influence Arabidopsis root system architecture through an auxin response mediated by bioactive cyclodipeptides. Journal of Plant Growth Regulation. 2020;39:254–265. https://doi.org/10.1007/s00344-019-09979-w
  46. Astriani M, Zubaidah S, Abadi AL, Suarsini E. Pseudomonas plecoglossicida as a novel bacterium for phosphate solubilizing and indole-3-acetic acid-producing from soybean rhizospheric soils of East Java, Indonesia. Biodiversitas. 2020;21(2):578–586. https://doi.org/10.13057/biodiv/d210220
  47. Chen W, Yang F, Zhang L, Wang J. Organic acid secretion and phosphate solubilizing efficiency of Pseudomonas sp. PSB12: Effects of phosphorus forms and carbon sources. Geomicrobiology Journal. 2016;33(10):870–877. https://doi.org/10.1080/01490451.2015.1123329
  48. Arkhipova TN, Galimsyanova NF, Kuzmina LYu, Vysotskaya LB, Sidorova LV, Gabbasova IM, et al. Effect of seed bacterization with plant growth-promoting bacteria on wheat productivity and phosphorus mobility in the rhizosphere. Plant, Soil and Environment. 2019;65(6):313–319. https://doi.org/10.17221/752/2018-PSE
  49. Qessaoui R, Bouharroud R, Furze JN, El Aalaoui M, Akroud H, Amarraque A, et al. Applications of new rhizobacteria Pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Scientific Reports. 2019;9:12832. https://doi.org/10.1038/s41598-019-49216-8
  50. Jishma P, Hussain N, Chellappan R, Rajendran R, Mathew J, Radhakrishnan EK. Strain-specific variation in plant growth promoting volatile organic compounds production by five different Pseudomonas spp. as confirmed by response of Vigna radiata seedlings. Journal of Applied Microbiology. 2017;123(1):204–216. https://doi.org/10.1111/jam.13474
  51. Kudoyarova GR, Vysotskaya LB, Arkhipova TN, Kuzmina LYu, Galimsyanova NF, Sidorova LV, et al. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta Physiologiae Plantarum. 2017;39:253. https://doi.org/10.1007/s11738-017-2556-9
  52. Billah M, Khan M, Bano A, Hassan TU, Munir A, Gurmani AR. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal. 2019;36(10):904–916. https://doi.org/10.1080/01490451.2019.1654043
  53. Iqbal A, Hasnain S. Auxin producing Pseudomonas strains: Biological candidates to modulate the growth of Triticum aestivum beneficially. American Journal of Plant Sciences. 2013;4(9):1693–1700. https://doi.org/10.4236/ajps.2013.49206
  54. Ortiz-Castro R, Díaz-Pérez C, Martínez-Trujillo M, del Río RE, Campos-García J, López-Bucio J. Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proceedings of the National Academy of Sciences. 2011;108(17):7253–7258. https://doi.org/10.1073/pnas.1006740108
  55. Blaggana A, Grover V, Anjali, Kapoor A, Blaggana V, Tanwar R, et al. Oral health knowledge, attitudes and practice behaviour among secondary school children in Chandigarh. Journal of Clinical and Diagnostic Research. 2016;10(10):ZC01–ZC06. https://doi.org/10.7860/JCDR/2016/23640.8633
  56. Karnwal A, Kaushik P. Cytokinin production by fluorescent Pseudomonas in the presence of rice root exudates. Archives of Phytopathology and Plant Protection. 2011;44(17):1728–1735. https://doi.org/10.1080/03235408.2010.526768
  57. Patel T, Saraf M. Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. Journal of Plant Interactions. 2017;12(1):480–487. https://doi.org/10.1080/17429145.2017.1392625
  58. Song Q, Deng X, Song R, Song X. Plant growth-promoting rhizobacteria promote growth of seedlings, regulate soil microbial community, and alleviate damping-off disease caused by Rhizoctonia solani on Pinus sylvestris var. mongolica. Plant Disease 2022;106(10):2730–2740. https://doi.org/10.1094/PDIS-11-21-2562-RE
  59. Sharma H, Haq MA, Koshariya AK, Kumar A, Rout S, Kaliyaperumal K. “Pseudomonas fluorescens” as an antagonist to control okra root rotting fungi disease in plants. Journal of Food Quality 2022;2022:5608543. https://doi.org/10.1155/2022/5608543
  60. Anak H, Dönmez MF, Çoruh İ. Biological control of Rhizoctonia solani Kühn. with rhizobacteria isolated from different soiland Calligonum polygonoides L. subsp. Comosum (L’hér.). Journal of Agriculture. 2021;4(2):92–107. https://doi.org/10.46876/ja.986625
  61. Yang X, Hong C. Biological control of Phytophthora blight by Pseudomonas protegens strain 14D5. European Journal of Plant Pathology. 2020;156:591–601. https://doi.org/10.1007/s10658-019-01909-6
  62. Sulochana MB, Jayachandra SY, Kumar SKA, Dayanand A. Antifungal attributes of siderophore produced by the Pseudomonas aeruginosa JAS‐25. Journal of Basic Microbiology. 2014;54. https://doi.org/10.1002/jobm.201200770
  63. Popova AA, Koksharova OA, Lipasova VA, Zaitseva YuV, Katkova-Zhukotskaya OA, Eremina SYu, et al. Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans, and Drosophila melanogaster. BioMed Research International. 2014;2014:125704. https://doi.org/10.1155/2014/125704
  64. Kumar S, Pandey P, Maheshwari DK. Reduction in dose of chemical fertilizers and growth enhancement of sesame (Sesamum indicum L.) with application of rhizospheric competent Pseudomonas aeruginosa LES4. European Journal of Soil Biology. 2009;45(4):334–340. https://doi.org/10.1016/j.ejsobi.2009.04.002
  65. Doussoulin Jara HA, Moya Elizondo EA. Root disease supressive soils: “take all decline (Gaeumannomyces graminis var. tritici) in wheat”, a case study. Agro Sur. 2011;39(2):67–78. https://doi.org/10.4206/agrosur.2011.v39n2-01
  66. Ma Z, Ongena M, Höfte M. The cyclic lipopeptide orfamide induces systemic resistance in rice to Cochliobolus miyabeanus but not to Magnaporthe oryzae. Plant Cell Reports. 2017;36:1731–1746. https://doi.org/10.1007/s00299-017-2187-z
  67. Ran LX, Li ZN, Wu GJ, van Loon LC, Bakker PAHM. Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. European Journal of Plant Pathology. 2005;113:59–70. https://doi.org/10.1007/s10658-005-0623-3
  68. Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C. Microbial syntrophy: interaction for the common good. FEMS Microbiology Reviews. 2013;37(3):384–406. https://doi.org/10.1111/1574-6976.12019
  69. Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences. 2006;103(3):626–631. https://doi.org/10.1073/pnas.0507535103
  70. Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE. 2009;4(5):e5695. https://doi.org/10.1371/journal.pone.0005695
  71. Jousset A, Schulz W, Scheu S, Eisenhauer N. Intraspecific genotypic richness and relatedness predict the invasibility of microbial communities. The ISME Journal. 2011;5(7):1108–1114. https://doi.org/10.1038/ismej.2011.9
  72. Awasthi A, Singh M, Soni SK, Singh R, Kalra A. Biodiversity acts as insurance of productivity of bacterial communities under abiotic perturbations. The ISME Journal. 2014;8(12):2445–24 52. https://doi.org/10.1038/ismej.2014.91
  73. Huang L, Liu C, Liu Y, Jia X. The composition analysis and preliminary cultivation optimization of a PHA-producing microbial consortium with xylose as a sole carbon source. Waste Management. 2016;52:77–85. https://doi.org/10.1016/j.wasman.2016.03.020
  74. Smid EJ, Lacroix C. Microbe-microbe interactions in mixed culture food fermentations. Current Opinion in Biotechnology. 2013;24(2):148–154. https://doi.org/10.1016/j.copbio.2012.11.007
  75. Tarasova IA, Koval'skaya MV. Obtaining a pure culture of saprotrophic bacteria. Mordovia University Bulletin. 2008;18(2):129–132. (In Russ.). https://www.elibrary.ru/SZCGCB
  76. Atuchin VV, Asyakina LK, Serazetdinova YuR, Frolova AS, Velichkovich NS, Prosekov AYu. Microorganisms for bioremediation of soils contaminated with heavy metals. Microorganisms. 2023;11(4):864. https://doi.org/10.3390/microorganisms11040864
  77. Parashar M, Dhar SK, Kaur J, Chauhan A, Tamang J, Singh GB, et al. Two novel plant-growth-promoting Lelliottia amnigena isolates from Euphorbia prostrata aiton enhance the overall productivity of wheat and tomato. Plants. 2023;12(17):3081. https://doi.org/10.3390/plants12173081
  78. Asyakina LK, Mudgal G, Tikhonov SL, Larichev TA, Fotina NV, Prosekov AYu. Study of the potential of natural microbiota of spring soft wheat to increase yield. Achievements of Science and Technology in Agro-Industrial Complex. 2023;37(11):12–17. (In Russ.). https://www.elibrary.ru/HXXGEC
  79. Kaur J, Mudgal G, Chand K, Singh GB, Perveen K, Bukhari NA, et al. An exopolysaccharide-producing novel Agrobacterium pusense strain JAS1 isolated from snake plant enhances plant growth and soil water retention. Scientific Reports. 2022;12:21330. https://doi.org/10.1038/s41598-022-25225-y
  80. Cordova-Rodriguez A, Rentería-Martínez ME, López-Miranda CA, Guzmán-Ortíz JM, Moreno-Salazar SF. Simple and sensitive spectrophotometric method for estimating the nitrogen-fixing capacity of bacterial cultures. MethodsX. 2022;9:101917. https://doi.org/10.1016/j.mex.2022.101917
  81. Das S, De TK. Microbial assay of N2 fixation rate, a simple alternate for acetylene reduction assay. MethodsX. 2018;5:909–914. https://doi.org/10.1016/j.mex.2017.11.010
  82. Rzhevskaya VS, Semenova EF, Zaitsev GP, Slastya EA, Omelchenko AV, Bugara IA, et al. ANTAGONISTIC effect of lactic acid bacteria and their consortium with yeast on pathogenic microorganisms. Biotechnology in Russia. 2021;37(5):96–107. (In Russ.). https://www.elibrary.ru/AFIKTR
  83. Irkitova AN, Kagan YaR, Sokolova GG. Comparative analysis of the methods to define antagonistic activity of lactic bacteria. Izvestiya of Altai State University. 2012;(3–1):41–44. (In Russ.). https://www.elibrary.ru/PBFQGV
  84. Biełło KA, Lucena C, López-Tenllado FJ, Hidalgo-Carrillo J, Rodríguez-Caballero G, Cabello P, et al. Holistic view of biological nitrogen fixation and phosphorus mobilization in Azotobacter chroococcum NCIMB 8003. Frontiers In Microbiology. 2023;14:1129721. https://doi.org/10.3389/fmicb.2023.1129721
  85. Alsalim HAA. Azotobacter chroococcum and Rhizobium leguminosarum inoculums survival in soiland efficiency in enhancing plant growth. Plant Archives. 2020;20(1):2851–2859.
  86. Kumar V, Behl RK, Narula N. Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiological Research. 2001;156(1):87–93. https://doi.org/10.1078/0944-5013-00081
  87. Aung A, Sev TM, Mon AA, Yu SS. Detection of abiotic stress tolerant Azotobacter species for enhancing plant growth promoting activities. Journal of Scientific and Innovative Research. 2020;9(2):48–53. https://doi.org/10.31254/jsir.2020.9203
  88. Kerečki S, Pećinar I, Karličić V, Mirković N, Kljujev I, Raičević V, et al. Azotobacter chroococcum F8/2: a multitasking bacterial strain in sugar beet biopriming. Journal of Plant Interactions. 2022;17(1):719–730. https://doi.org/10.1080/17429145.2022.2091802
  89. Song Y, Liu J, Chen F. Azotobacter chroococcum inoculation can improve plant growth and resistance of maize to armyworm, Mythimna separata even under reduced nitrogen fertilizer application. Pest Management Science. 2020;76:4131–4140. https://doi.org/10.1002/ps.5969
  90. Naz I, Bano A, Rehman B, Pervaiz S, Iqbal M, Sarwar A, et al. Potential of Azotobacter vinelandii Khsr1 as bio-inoculant. African Journal of Biotechnology. 2012;11(45):10368–10372.
  91. McRose DL, Baars O, Morel FMM, Kraepiel AML. Siderophore production in Azotobacter vinelandii in response to Fe‐, Mo‐ and V‐limitation. Environmental Microbiology. 2017;19(9):3595–3605. https://doi.org/10.1111/1462-2920.13857
  92. McRose DL, Lee A, Kopf SH, Baars O, Kraepiel AML, Sigman DM, et al. Effect of iron limitation on the isotopic composition of cellular and released fixed nitrogen in Azotobacter vinelandii. Geochimica et Cosmochimica Acta. 2019;244:12–23. https://doi.org/10.1016/j.gca.2018.09.023
  93. Sev TM, Aung A, Mon AA, Yu SS. Assessment for plant growth promoting activities of Azotobacter vinelandii AV7 from rhizospheric soil of tomato. Journal of Materials and Environmental Science. 2020;11(11):1807–1815.
  94. Shuvro SK, Jog R, Morikawa M. Diazotrophic bacterium Azotobacter vinelandii as a mutualistic growth promoter of an aquatic plant: Lemna minor. Plant Growth Regulation. 2023;100:171–180. https://doi.org/10.1007/s10725-022-00948-0
  95. Rosas SB. Pseudomonas chlororaphis subsp. aurantiaca SR1: Isolated from rhizosphere and its return as inoculant. A review. International Biology Review. 2017;1(3).
  96. Shi X-Q, Zhu D-H, Chen J-L, Qin Y-Y, Li X-W, Qin S, et al. Growth promotion and biological control of fungal diseases in tomato by a versatile rhizobacterium, Pseudomonas chlororaphis subsp. aureofaciens SPS-41. Physiological and Molecular Plant Pathology. 2024;131:102274. https://doi.org/10.1016/j.pmpp.2024.102274
  97. Al-Baldawy MSM, Matloob AAAH, Almammory MKN. The importance of nitrogen-fixing bacteria Azotobacter chroococcum in biological control to root rot pathogens (review). IOP Conference Series: Earth and Environmental Science. 2023;1259:012110. https://doi.org/10.1088/1755-1315/1259/1/012110
  98. Muslim SN, Aziz RAR, Al-Hakeem AM. Biological control of Azotobacter chroococcum on Fusarium solani in tomato plant. Journal of Physics: Conference Series. 2021;1879:022018. https://doi.org/10.1088/1742-6596/1879/2/022018
  99. Alsudani AA, Al-Awsi GRL. Biocontrol of Rhizoctonia solani (Kühn) and Fusarium solani (Marti) causing damping-off disease in tomato with Azotobacter chroococcum and Pseudomonas fluorescens. Pakistan Journal of Biological Sciences. 2020;23(11):1456–1461. https://doi.org/10.3923/pjbs.2020.1456.1461
  100. Pattaeva MA, Pattaev AA, Rasulov BA. Analysis of antifungal compounds of bacteria genus azotobacter. Scientific Bulletin of NamSU. 2023;8:119–124.
  101. Chuiko NV, Chobotarov AYu, Savchuk YaI, Kurchenko IM, Kurdish IK. Antagonistic activity of Azotobаcter vinelandii IMV B-7076 against phytopathogenic microorganisms. Mīkrobiologīchniĭ Zhurnal. 2020;82(5):21–29. https://doi.org/10.15407/microbiolj82.05.021
  102. Bolaños-Dircio A, Segura D, Toribio-Jiménez J, Toledo-Hernández E, Ortuño-Pineda C, Ortega-Acosta SÁ, et al. Cysts and alkylresorcinols of Azotobacter vinelandii inhibit the growth of phytopathogenic fungi. Chilean Journal of Agricultural Research. 2022;82(4):658–662. https://doi.org/10.4067/S0718-58392022000400658
  103. Poštić D, Jošić D, Lepšanović Z, Aleksić G, Latković D, Starović M. The effect of Pseudomonas chlororaphis subsp. aurantiaca strain Q16 able to inhibit Fusarium oxysporum growth on potato yield. Ratarstvo i Povrtarstvo. 2019;56(2):41–48. https://doi.org/10.5937/ratpov56-20428
  104. Tagele SB, Lee HG, Kim SW, Lee YS. Phenazine and 1-undecene producing Pseudomonas chlororaphis subsp. aurantiaca strain KNU17Pc1 for growth promotion and disease suppression in Korean maize cultivars. Journal of Microbiology and Biotechnology. 2019;29(1):66–78. https://doi.org/10.4014/jmb.1808.08026
  105. Raio A, Reveglia P, Puopolo G, Cimmino A, Danti R, Evidente A. Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo. Microbiological Research. 2017;199:49–56. https://doi.org/10.1016/j.micres.2017.03.003
  106. Zhang Y, Li T, Xu M, Guo J, Zhang C, Feng Z, et al. Antifungal effect of volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 on oxidative stress and mitochondrial dysfunction of Ceratocystis fimbriata. Pesticide Biochemistry and Physiology. 2021;173:104777. https://doi.org/10.1016/j.pestbp.2021.104777
Как цитировать?
Serazetdinova YuR, Chekushkina DYu, Borodina EE, Kolpakova DE, Minina VI, Altshuler OG, et al. Synergistic interaction between Azotobacter and Pseudomonas bacteria in a growth-stimulating consortium. Foods and Raw Materials. 2025;13(2):376–393. https://doi.org/10.21603/2308-4057-2025-2-651 
О журнале