ISSN 2308-4057 (Печать),
ISSN 2310-9599 (Онлайн)

Encapsulated polyphenols in functional food production

Polyphenols are present as nutrient components in many functional food formulations. However, their bioavailability is quite low, and they tend to degrade under extreme technological conditions, e.g., heating, pH, etc. Moreover, polyphenols are known for their specific bitter taste. As a result, a large amount of polyphenols spoils the sensory properties of the finished product. Encapsulation seems a prospective solution to this problem. This article provides a comprehensive review of scientific publications on various methods of polyphenol encapsulation.
The review covered publications registered in PubMed, Google Scholar, ResearchGate, Elsevier, eLIBRARY.RU, and Cyberleninka in 2002–2023 with a focus on original research articles published after 2012. The search involved such keywords as polyphenols, encapsulation, flavonoids, delivery systems, and functional products.
Encapsulating materials are made of organic or inorganic substances, as well as of their combinations. Mineral salts delay the contact between polyphenols and taste buds. However, they are not resistant enough to gastric juice. In this respect, organic matrices are more effective. Carbohydrates protect active molecules from degradation in the stomach. Liposomes increase the bioavailability of polyphenols. Milk or whey proteins also proved quite effective for a number of reasons. First, they mask the astringent taste, which makes it possible to include more polyphenols in functional food formulations. Second, the resulting product is fortified with valuable proteins and essential amino acids. Third, high concentrations of polyphenols possess enough antioxidant properties to increase the shelf-life.
Polyphenol encapsulation is an effective method of functional product design, especially in the sphere of foods made for dietary nutrition, sports, preventive diets, etc.
Ключевые слова
Polyphenols, biological activity, encapsulation, functional ingredients
The research was supported by the Ministry of Science and Higher Education of the Russian Federation (Minobrnauki) as part of the high-tech production project on prebiotic lactulose and functional dairy ingredients for import substitution in medicine, veterinary medicine, and baby food, as well as therapeutic and prophylactic products for people and animals (Agreement No. 075-11-2022-021 April 7, 2022; Decree No. 218 of the Government of the Russian Federation of April 9, 2010).
  1. Blando F, Calabriso N, Berland H, Maiorano G, Gerardi C, Carluccio M, et al. Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables. International Journal of Molecular Sciences. 2018;19(1).
  2. Tian L, Tan Y, Chen G, Wang G, Sun J, Ou S, et al. Metabolism of anthocyanins and consequent effects on the gut microbiota. Critical Reviews in Food Science and Nutrition. 2019;59(6):982–991.
  3. Tena N, Martín J, Asuero AG. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants. 2020;9(5).
  4. Bendokas V, Stanys V, Mažeikienė I, Trumbeckaite S, Baniene R, Liobikas J. Anthocyanins: From the field to the antioxidants in the body. Antioxidants. 2020;9(9).
  5. Fernández-Fernández AM, Dellacassa E, Nardin T, Larcher R, Ibañez C, Terán D, et al. Tannat grape skin: A feasible ingredient for the formulation of snacks with potential for reducing the risk of diabetes. Nutrients. 2022;14(3).
  6. Łysiak G. Ornamental flowers grown in human surroundings as a source of anthocyanins with high anti-inflammatory properties. Foods. 2022;11(7).
  7. Batçıoğlu K, Küçükbay F, Alagöz MA, Günal S, Yilmaztekin Y. Antioxidant and antithrombotic properties of fruit, leaf, and seed extracts of the Halhalı olive (Olea europaea L.) native to the Hatay region in Turkey. Foods and Raw Materials. 2023;11(1):84–93.
  8. Popova AYu, Tutelyan VA, Nikityuk DB. On the new (2021) norms of physiological requirements in energy and nutrients of various groups of the population of the Russian Federation. Problems of Nutrition. 2021;90(4):6–19. (In Russ.).
  9. Caballero S, Li YO, McClements DJ, Davidov-Pardo G. Encapsulation and delivery of bioactive citrus pomace polyphenols: a review. Critical Reviews in Food Science and Nutrition. 2022;62(29):8028–8044.
  10. Maqsoudlou A, Assadpour E, Mohebodini H, Jafari SM. Improving the efficiency of natural antioxidant compounds via different nanocarriers. Advances in Colloid and Interface Science. 2020;278.
  11. Maqsoudlou A, Assadpour E, Mohebodini H, Jafari SM. The influence of nanodelivery systems on the antioxidant activity of natural bioactive compounds. Critical Reviews in Food Science and Nutrition. 2022;62(12):3208–3231.
  12. Steiner BM, Shukla V, McClements DJ, Li YO, Sancho‐Madriz M, Davidov‐Pardo G. Encapsulation of lutein in nanoemulsions stabilized by resveratrol and Maillard conjugates. Journal of Food Science. 2019;84(9):2421–2431.
  13. Choi SJ, McClements DJ. Nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability. Food Science and Biotechnology. 2020;29(2):149–168.
  14. McClements DJ. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Progress in Lipid Research. 2021;81.
  15. Jhaveri A, Deshpande P, Pattni B, Torchilin V. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. Journal of Controlled Release. 2018;277:89–101.
  16. Szulc-Musioł B, Sarecka-Hujar B. The use of micro- and nanocarriers for resveratrol delivery into and across the skin in different skin diseases – A literature review. Pharmaceutics. 2021;13(4).
  17. Trindade LR, da Silva DVT, Baião DS, Paschoalin VMF. Increasing the power of polyphenols through nanoencapsulation for adjuvant therapy against cardiovascular diseases. Molecules. 2021;26(15).
  18. Rodríguez‐Félix F, Del‐Toro‐Sánchez CL, Cinco‐Moroyoqui FJ, Juárez J, Ruiz‐Cruz S, López‐Ahumada GA, et al. Preparation and characterization of quercetin‐loaded zein nanoparticles by electrospraying and study of in vitro bioavailability. Journal of Food Science. 2019;84(10):2883–2897.
  19. Hosseini H, Jafari SM. Introducing nano/microencapsulated bioactive ingredients for extending the shelf-life of food products. Advances in Colloid and Interface Science. 2020;282.
  20. Jia Z, Dumont M-J, Orsat V. Encapsulation of phenolic compounds present in plants using protein matrices. Food Bioscience. 2016;15:87–104. httpss://
  21. Augustin MA, Hemar Y. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chemical Society Reviews. 2009;38(4):902–912.
  22. Joye IJ, McClements DJ. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Current Opinion in Colloid and Interface Science. 2014;19(5):417–427.
  23. Nesterenko A, Alric I, Silvestre F, Durrieu V. Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Industrial Crops and Products. 2013;42:469–479.
  24. Gouin S. Microencapsulation: Industrial appraisal of existing technologies and trends. Trends in Food Science and Technology. 2004;15(7–8):330–347.
  25. Munteanu BS, Vasile C. Encapsulation of natural bioactive compounds by electrospinning – Applications in food storage and safety. Polymers. 2021;13(21).
  26. Wang YH, Zhao M, Barker SA, Belton PS, Craig DQM. A spectroscopic and thermal investigation into the relationship between composition, secondary structure and physical characteristics of electrospun zein nanofibers. Materials Science and Engineering: C. 2019;98:409–418.
  27. Neo YP, Ray S, Jin J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Liu D, et al. Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein-gallic acid system. Food Chemistry. 2013;136(2):1013–1021.
  28. Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C. Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology. 2013;6:628–647.
  29. Munin A, Edwards-Lévy F. Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics. 2011;3(4):793–829.
  30. Gómez-Mascaraque LG, Llavata-Cabrero B, Martínez-Sanz M, Fabra MJ, López-Rubio A. Self-assembled gelatin-ι-carrageenan encapsulation structures for intestinal-targeted release applications. Journal of Colloid and Interface Science. 2018;517:113–123.
  31. Zhang H, Wang T, He F, Chen G. Fabrication of pea protein-curcumin nanocomplexes via microfluidization for improved solubility, nano-dispersibility and heat stability of curcumin: Insight on interaction mechanisms. International Journal of Biological Macromolecules. 2021;168:686–694.
  32. Guo Q, Bayram I, Shu X, Su J, Liao W, Wang Y, et al. Improvement of stability and bioaccessibility of β-carotene by curcumin in pea protein isolate-based complexes-stabilized emulsions: Effect of protein complexation by pectin and small molecular surfactants. Food Chemistry. 2022;367.
  33. Molino S, Rufián Henares JÁ, Gómez-Mascaraque LG. Impact of gelatine coating on the performance of tannin-loaded pectin microbeads obtained through external gelation. Food Structure. 2022;32.
  34. Molino S, Rufián Henares JÁ, Gómez-Mascaraque LG. Tannin-rich extracts improve the performance of amidated pectin as an alternative microencapsulation matrix to alginate. Current Research in Food Science. 2022;5:243–250.
  35. Elabbadi A, Jeckelmann N, Haefliger OP, Ouali L. Complexation/encapsulation of green tea polyphenols in mixed calcium carbonate and phosphate micro-particles. Journal of Microencapsulation. 2011;28(1):1–9.
  36. Oidtmann J, Schantz M, Mäder K, Baum M, Berg S, Betz M, et al. Preparation and comparative release characteristics of three anthocyanin encapsulation systems. Journal of Agricultural and Food Chemistry. 2012;60(3):844–851.
  37. Wang Q, Tang Y, Yang Y, Lei L, Lei X, Zhao J, et al. Interactions and structural properties of zein/ferulic acid: The effect of calcium chloride. Food Chemistry. 2022;373.
  38. Ćorković I, Pichler A, Ivić I, Šimunović J, Kopjar M. Microencapsulation of chokeberry polyphenols and volatiles: application of alginate and pectin as wall materials. Gels. 2021;7(4).
  39. Dey M, Ghosh B, Giri TK. Enhanced intestinal stability and pH sensitive release of quercetin in GIT through gellan gum hydrogels. Colloids and Surfaces B: Biointerfaces. 2020;196.
  40. Vallejo‐Castillo V, Rodríguez‐Stouvenel A, Martínez R, Bernal C. Development of alginate‐pectin microcapsules by the extrusion for encapsulation and controlled release of polyphenols from papaya (Carica papaya L.). Journal of Food Biochemistry. 2020;44(9).
  41. Guzmán-Díaz DA, Treviño-Garza MZ, Rodríguez-Romero BA, Gallardo-Rivera CT, Amaya-Guerra CA, Báez-González JG. Development and characterization of gelled double emulsions based on chia (Salvia hispanica L.) mucilage mixed with different biopolymers and loaded with green tea extract (Camellia sinensis). Foods. 2019;8(12).
  42. Massounga Bora AF, Ma S, Li X, Liu L. Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: Review and recent advances. Food Research International. 2018;105:241–249.
  43. Sánchez-Machado DI, López-Cervantes J, Correa-Murrieta MA, Sánchez-Duarte RG, Cruz-Flores P, de la Mora-López GS. Chitosan. In: Nabavi SM, Silva AS, editors. Nonvitamin and nonmineral nutritional supplements. Academic Press; 2019. pp. 485–493.
  44. Elbehairi SEI, Ismail LA, Alfaifi MY, Elshaarawy RFM, Hafez HS. Chitosan nano-vehicles as biocompatible delivering tools for a new Ag(I)curcuminoid-Gboxin analog complex in cancer and inflammation therapy. International Journal of Biological Macromolecules. 2020;165:2750–2764.
  45. Haładyn K, Tkacz K, Wojdyło A, Nowicka P. The types of polysaccharide coatings and their mixtures as a factor affecting the stability of bioactive compounds and health-promoting properties expressed as the ability to Inhibit the α-amylase and α-glucosidase of chokeberry extracts in the microencapsulation process. Foods. 2021;10(9).
  46. Jiang F, Du C, Zhao N, Jiang W, Yu X, Du S. Preparation and characterization of quinoa starch nanoparticles as quercetin carriers. Food Chemistry. 2022;369.
  47. Remanan MK, Zhu F. Encapsulation of rutin using quinoa and maize starch nanoparticles. Food Chemistry. 2021;353.
  48. Jeong H-M, Lee Y, Shin Y-J, Woo S-H, Kim J-S, Jeong D-W, et al. Development of an enzymatic encapsulation process for a cycloamylose inclusion complex with resveratrol. Food Chemistry. 2021;345.
  49. Pieczykolan E, Kurek MA. Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. International Journal of Biological Macromolecules. 2019;129:665–671.
  50. Vergara C, Pino MT, Zamora O, Parada J, Pérez R, Uribe M, et al. Microencapsulation of anthocyanin extracted from purple flesh cultivated potatoes by spray drying and its effects on in vitro gastrointestinal digestion. Molecules. 2020;25(3).
  51. di Costanzo A, Angelico R. Formulation Strategies for enhancing the bioavailability of silymarin: The state of the art. Molecules. 2019;24(11).
  52. Tajmohammadi A, Razavi BM, Hosseinzadeh H. Silybum marianum (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: A review. Phytotherapy Research. 2018;32(10):1933–1949.
  53. Fallah M, Davoodvandi A, Nikmanzar S, Aghili S, Mirazimi SMA, Aschner M, et al. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomedicine and Pharmacotherapy. 2021;142.
  54. Hüttl M, Markova I, Miklankova D, Zapletalova I, Poruba M, Racova Z, et al. The beneficial additive effect of silymarin in metformin therapy of liver steatosis in a pre-diabetic model. Pharmaceutics. 2021;14(1).
  55. Amer ME, Amer MA, Othman AI, Elsayed DA, El-Missiry MA, Ammar OA. Silymarin inhibits the progression of Ehrlich solid tumor via targeting molecular pathways of cell death, proliferation, angiogenesis, and metastasis in female mice. Molecular Biology Reports. 2022;49:4659–4671.
  56. Sansone F, Esposito T, Lauro MR, Picerno P, Mencherini T, Gasparri F, et al. Application of spray drying particle engineering to a high-functionality/low-solubility milk thistle extract: Powders production and characterization. Molecules. 2018;23(7).
  57. Lachowicz S, Michalska-Ciechanowska A, Oszmiański J. The Impact of maltodextrin and inulin on the protection of natural antioxidants in powders made of saskatoon berry fruit, juice, and pomace as functional food ingredients. Molecules. 2020;25(8).
  58. Upputuri RTP, Mandal AKA. Sustained release of green tea polyphenols from liposomal nanoparticles; release kinetics and mathematical modelling. Iranian Journal of Biotechnology. 2017;15(4):277–283.
  59. Chimento A, de Amicis F, Sirianni R, Sinicropi MS, Puoci F, Casaburi I, et al. Progress to improve oral bioavailability and beneficial effects of resveratrol. International Journal of Molecular Sciences. 2019;20(6).
  60. Ozkan G, Kostka T, Esatbeyoglu T, Capanoglu E. Effects of lipid-based encapsulation on the bioaccessibility and bioavailability of phenolic compounds. Molecules. 2020;25(23).
  61. Rodriguez EB, Almeda RA, Vidallon MLP, Reyes CT. Enhanced bioactivity and efficient delivery of quercetin through nanoliposomal encapsulation using rice bran phospholipids. Journal of the Science of Food and Agriculture. 2019;99(4):1980–1989.
  62. Jahanfar S, Gahavami M, Khosravi-Darani K, Jahadi M, Mozafari MR. Entrapment of rosemary extract by liposomes formulated by Mozafari method: Physicochemical characterization and optimization. Heliyon. 2021;7(12).
  63. Cutrim CS, Alvim ID, Cortez MAS. Microencapsulation of green tea polyphenols by ionic gelation and spray chilling methods. Journal of Food Science and Technology. 2019;56(8):3561–3570.
  64. Pan K, Luo Y, Gan Y, Baek SJ, Zhong Q. pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Soft Matter. 2014;10(35):6820–6830.
  65. Peng S, Zou L, Zhou W, Liu W, Liu C, McClements DJ. Encapsulation of lipophilic polyphenols into nanoliposomes using pH-driven method: Advantages and disadvantages. Journal of Agricultural and Food Chemistry. 2019;67(26):7506–7511.
  66. Moghaddasi F, Housaindokht MR, Darroudi M, Bozorgmehr MR, Sadeghi A. Synthesis of nano curcumin using black pepper oil by O/W Nanoemulsion Technique and investigation of their biological activities. LWT. 2018;92:92–100.
  67. Kumar R, Kaur K, Uppal S, Mehta SK. Ultrasound processed nanoemulsion: A comparative approach between resveratrol and resveratrol cyclodextrin inclusion complex to study its binding interactions, antioxidant activity and UV light stability. Ultrasonics Sonochemistry. 2017;37:478–489.
  68. Mamadou G, Charrueau C, Dairou J, Nzouzi NL, Eto B, Ponchel G. Increased intestinal permeation and modulation of presystemic metabolism of resveratrol formulated into self-emulsifying drug delivery systems. International Journal of Pharmaceutics. 2017;521(1–2):150–155.
  69. Minnelli C, Moretti P, Fulgenzi G, Mariani P, Laudadio E, Armeni T, et al. A Poloxamer-407 modified liposome encapsulating epigallocatechin-3-gallate in the presence of magnesium: Characterization and protective effect against oxidative damage. International Journal of Pharmaceutics. 2018;552(1–2):225–234.
  70. Huang M, Liang C, Tan C, Huang S, Ying R, Wang Y, et al. Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food and Function. 2019;10(10):6447–6458.
  71. Chen W, Zou M, Ma X, Lv R, Ding T, Liu D. Co‐encapsulation of EGCG and quercetin in liposomes for optimum antioxidant activity. Journal of Food Science. 2018;84(1):111–120.
  72. Zhang H, Fan Q, Li D, Chen X, Liang L. Impact of gum Arabic on the partition and stability of resveratrol in sunflower oil emulsions stabilized by whey protein isolate. Colloids and surfaces B: Biointerfaces. 2019;181:749–755.
  73. Vázquez-Ríos AJ, Molina-Crespo Á, Bouzo BL, López-López R, Moreno-Bueno G, de la Fuente M. Exosome-mimetic nanoplatforms for targeted cancer drug delivery. Journal of Nanobiotechnology. 2019;17.
  74. Zhao L, Gu C, Gan Y, Shao L, Chen H, Zhu H. Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. Journal of Controlled Release. 2020;318:1–15.
  75. Wan Z, Zhao L, Lu F, Gao X, Dong Y, Zhao Y, et al. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics. 2020;10(1):218–230.
  76. Butreddy A, Kommineni N, Dudhipala N. Exosomes as naturally occurring vehicles for delivery of biopharmaceuticals: Insights from drug delivery to clinical perspectives. Nanomaterials. 2021;11(6).
  77. Vashisht M, Rani P, Onteru SK, Singh D. Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro. Applied Biochemistry and Biotechnology. 2017;183:993–1007.
  78. Oskouie MN, Moghaddam NSA, Butler AE, Zamani P, Sahebkar A. Therapeutic use of curcumin‐encapsulated and curcumin‐primed exosomes. Journal of Cellular Physiology. 2019;234(6):8182–8191.
  79. Feng X, Chen X, Zheng X, Zhu H, Qi Q, Liu S, et al. Latest trend of milk derived exosomes: Cargos, functions, and applications. Frontiers in Nutrition. 2021;8.
  80. Ali NB, Razis AFA, Ooi DJ, Chan KW, Ismail N, Foo JB. Theragnostic applications of mammal and plant-derived extracellular vesicles: Latest findings, current technologies, and prospects. Molecules. 2022;27(12).
  81. Wang Y, Wang J, Ma J, Zhou Y, Lu R. Focusing on future applications and current challenges of plant derived extracellular vesicles. Pharmaceuticals. 2022;15(6).
  82. Kardum N, Glibetic M. Polyphenols and their interactions with other dietary compounds: Implications for human health. Advances in Food and Nutrition Research. 2018;84:103–144.
  83. Huang J, He Z, Cheng R, Cheng Z, Wang S, Wu X, et al. Assessment of binding interaction dihydromyricetin and myricetin with bovine lactoferrin and effects on antioxidant activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;243.
  84. Kanakis CD, Hasni I, Bourassa P, Tarantilis PA, Polissiou MG, Tajmir-Riahi H-A. Milk β-lactoglobulin complexes with tea polyphenols. Food Chemistry. 2011;127(3):1046–1055.
  85. Yagolnik EA, Muzafarov EN, Kim YuA, Tarahovsky YuS. The interaction of flavonol quercetin with collagen. Izvestiya Tula State University. Natural Sciences. 2015;(2):121–132. (In Russ.).
  86. Zhang L, Wang Y, Xu M, Hu X. Galloyl moieties enhance the binding of (−)-epigallocatechin-3-gallate to β-lactoglobulin: A spectroscopic analysis. Food Chemistry. 2017;237:39–45.
  87. Ma C-M, Zhao X-H. Depicting the non-covalent interaction of whey proteins with galangin or genistein using the multi-spectroscopic techniques and molecular docking. Foods. 2019;8(9).
  88. Qie X, Chen Y, Quan W, Wang Z, Zeng M, Qin F, et al. Analysis of β-lactoglobulin–epigallocatechin gallate interactions: the antioxidant capacity and effects of polyphenols under different heating conditions in polyphenolic–protein interactions. Food and Function. 2020;11(5):3867–3878.
  89. Nieuwland M, Geerdink P, Brier P, van den Eijnden P, Henket JTMM, Langelaan MLP, et al. Food-grade electrospinning of proteins. Innovative Food Science and Emerging Technologies. 2013;20:269–275.
  90. Ma C-M, Zhao X-H. The Non-covalent interactions and in vitro radical scavenging activities of the caseinate-galangin and caseinate-genistein complexes. Antioxidants. 2019;8(9).
  91. Jia J, Gao X, Hao M, Tang L. Comparison of binding interaction between β-lactoglobulin and three common polyphenols using multi-spectroscopy and modeling methods. Food Chemistry. 2017;228:143–151.
  92. Li Z, Percival SS, Bonard S, Gu L. Fabrication of nanoparticles using partially purified pomegranate ellagitannins and gelatin and their apoptotic effects. Molecular Nutrition and Food Research. 2011;55(7):1096–1103.
  93. Bruni GP, Acunha TS, de Oliveira JP, Fonseca LM, da Silva FT, Guimarães VM, et al. Electrospun protein fibers loaded with yerba mate extract for bioactive release in food packaging. Journal of the Science of Food and Agriculture. 2020;100(8):3341–3350.
  94. Shpigelman A, Cohen Y, Livney YD. Thermally-induced β-lactoglobulin–EGCG nanovehicles: Loading, stability, sensory and digestive-release study. Food Hydrocolloids. 2012;29(1):57–67.
  95. Li B, Du W, Jin J, Du Q. Preservation of (−)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles. Journal of Agricultural and Food Chemistry. 2012;60(13):3477–3484.
  96. Lestringant P, Guri A, Gülseren İ, Relkin P, Corredig M. Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin–epigallocatechin-3-gallate complexes. Journal of Agricultural and Food Chemistry. 2014;62(33):8357–8364.
  97. Cheng H, Ni Y, Bakry AM, Liang L. Encapsulation and protection of bioactive nutrients based on ligand- binding property of milk proteins. International Journal of Nutrition and Food Sciences. 2015;2(7).
  98. Xiang L-W, Melton LD, Leung IKH. Interactions of β-lactoglobulin with small molecules. In: Melton L, Shahidi F, Varelis P, editors. Encyclopedia of food chemistry. Elsevier; 2019. pp. 560–565.
  99. Li M, Liu Y, Liu Y, Zhang X, Han D, Gong J. pH-driven self-assembly of alcohol-free curcumin-loaded zein-propylene glycol alginate complex nanoparticles. International Journal of Biological Macromolecules. 2022;213:1057–1067.
  100. Xue J, Tan C, Zhang X, Feng B, Xia S. Fabrication of epigallocatechin-3-gallate nanocarrier based on glycosylated casein: Stability and interaction mechanism. Journal of Agricultural and Food Chemistry. 2014;62(20):4677–4684.
  101. Li M, Fokkink R, Ni Y, Kleijn JM. Bovine beta-casein micelles as delivery systems for hydrophobic flavonoids. Food Hydrocolloids. 2019;96:653–662.
  102. Xu J, Hao M, Sun Q, Tang L. Comparative studies of interaction of β-lactoglobulin with three polyphenols. International Journal of Biological Macromolecules. 2019;136:804–812.
  103. Li A, Chen L, Zhou W, Pan J, Gong D, Zhang G. Effects of baicalein and chrysin on the structure and functional properties of β-lactoglobulin. Foods. 2022;11(2).
  104. Baba WN, McClements DJ, Maqsood S. Whey protein–polyphenol conjugates and complexes: Production, characterization, and applications. Food Chemistry. 2021;365.
  105. Liu Q, Sun Y, Cheng J, Zhang X, Guo M. Changes in conformation and functionality of whey proteins induced by the interactions with soy isoflavones. LWT. 2022;163.
  106. Huang G, Jin H, Liu G, Yang S, Jiang L, Zhang Y, et al. An insight into the changes in conformation and emulsifying properties of soy β-conglycinin and glycinin as affected by EGCG: Multi-spectral analysis. Food Chemistry. 2022;394.
  107. Wu X, Lu Y, Xu H, Lin D, He Z, Wu H, et al. Reducing the allergenic capacity of β-lactoglobulin by covalent conjugation with dietary polyphenols. Food Chemistry. 2018;256:427–434.
  108. Devi N, Sarmah M, Khatun B, Maji TK. Encapsulation of active ingredients in polysaccharide–protein complex coacervates. Advances in Colloid and Interface Science. 2017;239:136–145.
  109. Bušić A, Belščak-Cvitanović A, Vojvodić Cebin A, Karlović S, Kovač V, Špoljarić I, et al. Structuring new alginate network aimed for delivery of dandelion (Taraxacum officinale L.) polyphenols using ionic gelation and new filler materials. Food Research International. 2018;111:244–255.
  110. Silva MP, Fabi JP. Food biopolymers-derived nanogels for encapsulation and delivery of biologically active compounds: A perspective review. Food Hydrocolloids for Health. 2022;2.
  111. Luo S, Saadi A, Fu K, Taxipalati M, Deng L. Fabrication and characterization of dextran/zein hybrid electrospun fibers with tailored properties for controlled release of curcumin. Journal of the Science of Food and Agriculture. 2021;101(15):6355–6367.
  112. Wang L, Li X, Wang H. Fabrication of BSA-Pinus koraiensis polyphenol-chitosan nanoparticles and their release characteristics under in vitro simulated gastrointestinal digestion. Food and Function. 2019;10(3):1295–1301.
  113. Caballero S, Li YO, McClements DJ, Davidov‐Pardo G. Hesperetin (citrus peel flavonoid aglycone) encapsulation using pea protein–high methoxyl pectin electrostatic complexes: Complex optimization and biological activity. Journal of the Science of Food and Agriculture. 2022;102(12):5554–5560.
  114. Viljanen K, Kylli P, Hubbermann E-M, Schwarz K, Heinonen M. Anthocyanin antioxidant activity and partition behavior in whey protein emulsion. Journal of Agricultural and Food Chemistry. 2005;53(6):2022–2027.
  115. Viljanen K, Kylli P, Kivikari R, Heinonen M. Inhibition of protein and lipid oxidation in liposomes by berry phenolics. Journal of Agricultural and Food Chemistry. 2004;52(24):7419–7424.
  116. Aceituno-Medina M, Mendoza S, Rodríguez BA, Lagaron JM, López-Rubio A. Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. Journal of Functional Foods. 2015;12:332–341.
  117. Yadav K, Bajaj RK, Mandal S, Mann B. Encapsulation of grape seed extract phenolics using whey protein concentrate, maltodextrin and gum arabica blends. Journal of Food Science and Technology. 2020;57(2):426–434.
  118. Betz M, Kulozik U. Microencapsulation of bioactive bilberry anthocyanins by means of whey protein gels. Procedia Food Science. 2011;1:2047–2056.
  119. Ha H-K, Kim JW, Lee M-R, Lee W-J. Formation and characterization of quercetin-loaded chitosan oligosaccharide/β-lactoglobulin nanoparticle. Food Research International. 2013;52(1):82–90.
  120. Guo Q, Su J, Shu X, Yuan F, Mao L, Liu J, et al. Fabrication, structural characterization and functional attributes of polysaccharide-surfactant-protein ternary complexes for delivery of curcumin. Food Chemistry. 2021;337.
  121. Shao P, Feng J, Sun P, Ritzoulis C. Improved emulsion stability and resveratrol encapsulation by whey protein/gum Arabic interaction at oil-water interface. International Journal of Biological Macromolecules. 2019;133:466–472.
  122. Wusigale, Wang T, Hu Q, Xue J, Khan MA, Liang L, et al. Partition and stability of folic acid and caffeic acid in hollow zein particles coated with chitosan. International Journal of Biological Macromolecules. 2021;183:2282–2292.
  123. Song X, Gan K, Qin S, Chen L, Liu X, Chen T, et al. Preparation and characterization of general-purpose gelatin-based co-loading flavonoids nano-core structure. Scientific Reports. 2019;9.
  124. Heep G, Almeida A, Marcano R, Vieira D, Mainardes RM, Khalil NM, et al. Zein-casein-lysine multicomposite nanoparticles are effective in modulate the intestinal permeability of ferulic acid. International Journal of Biological Macromolecules. 2019;138:244–251.
  125. Peñalva R, Morales J, González-Navarro CJ, Larrañeta E, Quincoces G, Peñuelas I, et al. Increased oral bioavailability of resveratrol by its encapsulation in casein nanoparticles. International Journal of Molecular Sciences. 2018;19(9).
  126. Peñalva R, Esparza I, Morales-Gracia J, González-Navarro CJ, Larrañeta E, Irache JM. Casein nanoparticles in combination with 2-hydroxypropyl-β-cyclodextrin improves the oral bioavailability of quercetin. International Journal of Pharmaceutics. 2019;570.
  127. Pedrozo RC, Antônio E, Khalil NM, Mainardes RM. Bovine serum albumin-based nanoparticles containing the flavonoid rutin produced by nano spray drying. Brazilian Journal of Pharmaceutical Sciences. 2020;56.
  128. Aluani D, Tzankova V, Kondeva-Burdina M, Yordanov Y, Nikolova E, Odzhakov F, et al. Еvaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin. International Journal of Biological Macromolecules. 2017;103:771–782.
  129. Baum M, Schantz M, Leick S, Berg S, Betz M, Frank K, et al. Is the antioxidative effectiveness of a bilberry extract influenced by encapsulation? Journal of the Science of Food and Agriculture. 2014;94(11):2301–2307.
  130. Rawel HM, Czajka D, Rohn S, Kroll J. Interactions of different phenolic acids and flavonoids with soy proteins. International Journal of Biological Macromolecules. 2002;30(3–4):137–150.
  131. Roy P, Parveen S, Ghosh P, Ghatak K, Dasgupta S. Flavonoid loaded nanoparticles as an effective measure to combat oxidative stress in Ribonuclease A. Biochimie. 2019;162:185–197.
  132. Beconcini D, Felice F, Zambito Y, Fabiano A, Piras AM, Macedo MH, et al. Anti-inflammatory effect of cherry extract loaded in polymeric nanoparticles: Relevance of particle internalization in endothelial cells. Pharmaceutics. 2019;11(10).
  133. Valizadeh H, Abdolmohammadi-vahid S, Danshina S, Ziya Gencer M, Ammari A, Sadeghi A, et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. International Immunopharmacology. 2020;89.
  134. Aljabali AAA, Bakshi HA, Hakkim FL, Haggag YA, Al-Batanyeh MK, Al Zoubi MS, et al. Albumin nano-encapsulation of piceatannol enhances its anticancer potential in colon cancer via downregulation of nuclear p65 and HIF-1α. Cancers. 2020;12(1).
  135. Guzmán-Oyarzo D, Hernández-Montelongo J, Rosas C, Leal P, Weber H, Alvear M, et al. Controlled release of caffeic acid and pinocembrin by use of nPSi-βCD composites improves their antiangiogenic activity. Pharmaceutics. 2022;14(3).
  136. Bulboacă AE, Porfire A, Bolboacă SD, Nicula CA, Feștilă DG, Roman A, et al. Protective effects of liposomal curcumin on oxidative stress/antioxidant imbalance, metalloproteinases 2 and -9, histological changes and renal function in experimental nephrotoxicity induced by gentamicin. Antioxidants. 2021;10(2).
  137. Zu Y, Overby H, Ren G, Fan Z, Zhao L, Wang S. Resveratrol liposomes and lipid nanocarriers: Comparison of characteristics and inducing browning of white adipocytes. Colloids and Surfaces B: Biointerfaces. 2018;164:414–423.
  138. Mittal A, Singh A, Benjakul S. Preparation and characterisation of liposome loaded with chitosan-epigallocatechin gallate conjugate. Journal of Microencapsulation. 2021;38(7–8):533–545.
  139. Zhang S, Li X, Ai B, Zheng L, Zheng X, Yang Y, et al. Binding of β-lactoglobulin to three phenolics improves the stability of phenolics studied by multispectral analysis and molecular modeling. Food Chemistry: X. 2022;15.
  140. Ferrentino G, Asaduzzaman Md, Scampicchio MM. Current technologies and new insights for the recovery of high valuable compounds from fruits by-products. Critical Reviews in Food Science and Nutrition. 2018;58(3):386–404.
  141. Dimou C, Karantonis HC, Skalkos D, Koutelidakis AE. Valorization of fruits by-products to unconventional sources of additives, oil, biomolecules and innovative functional foods. Current Pharmaceutical Biotechnology. 2019;20(10):776–786.
  142. Valencia-Hernandez LJ, Wong-Paz JE, Ascacio-Valdés JA, Chávez-González ML, Contreras-Esquivel JC, Aguilar CN. Procyanidins: From agro-industrial waste to food as bioactive molecules. Foods. 2021;10(12).
  143. Cano-Lamadrid M, Artés-Hernández F. By-products revalorization with non-thermal treatments to enhance phytochemical compounds of fruit and vegetables derived products: A review. Foods. 2021;11(1).
  144. Chamorro F, Carpena M, Fraga-Corral M, Echave J, Riaz Rajoka MS, Barba FJ, et al. Valorization of kiwi agricultural waste and industry by-products by recovering bioactive compounds and applications as food additives: A circular economy model. Food Chemistry. 2022;370.
  145. Hafizov SG, Musina ON, Hafizov GK. Extracting hydrophilic components from pomegranate peel and pulp. Food Processing: Techniques and Technology. 2023;53(1):168–182. (In Russ.).
Как цитировать?
Bobrysheva TN, Anisimov GS, Zolotoreva MS, Evdokimov IA, Budkevich RO, Muravyev AK. Encapsulated polyphenols in functional food production. Foods and Raw Materials. 2025;13(1):18–34. 
О журнале