ISSN 2308-4057 (Печать),
ISSN 2310-9599 (Онлайн)

Functional instant beverages

Brown algae are a source of hydrothermal extracts that can serve as an effective raw material for instant beverages. This article offers new formulations of functional instant beverages made of concentrated fruit juices and algal extracts of Saccharina japonica and Sargassum miyabei Yendo. The research objective was to define their bioactive and antioxidant profiles. The research featured S. miyabei Yendo and S. japonica brown algae from the Far East of Russia, their dry hydrothermal extracts, and instant drinks based on these extracts combined with concentrated juices of cranberry, sea buckthorn, and chokeberry. The list of methods included spectrophotometry, high-performance liquid chromatography, and gas chromatography. The hydrothermal algal extracts of S. miyabei and S. japonica were rich in fucoidan, phenolic compounds, and iodine. The new instant beverages underwent a sensory evaluation. They contained iodine, phenolic compounds, vitamins (ascorbic acid), fucoidan, pectin, flavonoids, anthocyanins, catechins, carotenoids, and tocopherols. All the samples could be classified as functional, but the best antiradical properties belonged to the sample with black chokeberry juice and S. miyabei. The new functional instant beverages had a high radical-binding activity, which reached 96.3%. One portion (200 mL) covered 27–30% of the recommended daily intake of iodine and 22–50% of vitamin C. The obtained results prove that instant beverages made of S. japonica and S. miyabei Yendo can be used as functional products.
Ключевые слова
Brown algae, Sargassum miyabei, Saccharina japonica, instant beverages, iodine, fucoidan, cranberry, sea buckthorn, black chokeberry
Вклад авторов
The authors were equally involved in the research and are equally responsible for any potential plagiarism.
The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
The research was funded by the Russian Science Foundation grant (RSF), project No. 22-76-00008.
  1. Stepanova AA, Asyakina LK. Expanding the range of kombucha drinks. Innovation in Food Biotechnology: Collection of abstracts of the VII International scientific conference of students, graduate students and young scientists; 2019; Kemerovo. Kemerovo: Kemerovo State University; 2019. p. 386–388. (In Russ.).
  2. Danilyan AV, Andrievskaya DV, Lazareva IV, Dokuchaeva YuA. Scientific and practical bases of dry mixtures production for drinks. Current Issues in the Beverage Industry. 2019;(3):65–71. (In Russ.).
  3. Büyükkormaz Ç, Küçükbay FZ. Kumquat fruit and leaves extracted with different solvents: phenolic content and antioxidant activity. Foods and Raw Materials. 2022;10(1):51–66.
  4. Dubinina EV, Krikunova LN, Peschanskaya VA, Trishkaneva MV. Scientific aspects of identification criteria for fruit distillates. Food Processing: Techniques and Technology. 2021;51(3):480–491. (In Russ.). 9414-2021-3-480-491
  5. Rajauria G. In-vitro antioxidant properties of lipophilic antioxidant compounds from 3 brown seaweed. Antioxidants. 2019;8(12).
  6. Meresse S, Fodil M, Fleury F, Chénais B. Fucoxanthin, a marine-derived carotenoid from brown seaweeds and microalgae: a promising bioactive compound for cancer therapy. International Journal of Molecular Sciences. 2020;21(23).
  7. Jesumani V, Du H, Aslam M, Pei P, Huang N. Potential use of seaweed bioactive compounds in skincare – A Review. Marine Drugs. 2019;17(12).
  8. Stonik VA. Basic research of natural products in the Far East region of Russia. Vestnik of the Far East Branch of the Russian Academy of Sciences. 2010;153(5):113–124. (In Russ.).
  9. Dzizyurov VD, Kulepanov VN, Shaposhnikova TV, Sukhoveeva MV, Gusarova IS, Ivanova NV. Atlas of mass species of algae and seagrasses of the Russian Far East. Vladivostok: Russian Federal Research Institute of Fisheries and oceanography; 2008. 327 p. (In Russ.).
  10. Tabakaev AV, Tabakaeva OV, Piekoszewski W, Kalenik TK, Poznyakovsky VM. Antioxidant properties of edible sea weed from the Northern Coast of the Sea of Japan. Foods and Raw Materials. 2021;9(2):262–270.
  11. Liu S, Xiao P, Kuang Yu, Hao J, Huang T, Liu E. Flavonoids from sea buckthorn: A review on phytochemistry, pharmacokinetics and role in metabolic diseases. Journal of Food Biochemistry. 2021;45(5).
  12. Jiang L, Zhang G, Li Y, Shi G, Li M. Potential application of plant-based functional foods in the development of immune boosters. Frontiers in Pharmacology. 2021;12.
  13. Shi H, He J, Li X, Han J, Wu R, Wang D, et al. Isorhamnetin, the active constituent of a Chinese herb Hippophae rhamnoides L, is a potent suppressor of dendritic-cell maturation and trafficking. International Immunopharmacology. 2018;55:216–222.
  14. Wang H, Bi H, Gao T, Zhao B, Ni W, Liu J. A homogalacturonan from Hippophaё rhamnoides L. berries enhance immunomodulatory activity through TLR4/MyD88 pathway mediated activation of macrophages. International Journal of Biological Macromolecules. 2018;107:1039–1045.
  15. Kajszczak D, Zakłos-Szyda M, Podsędek A. Viburnum opulus L. – A review of phytochemistry and biological effects. Nutrients. 2020;12(11).
  16. Moldovan B, Ghic O, David L, Chisbora C. The Influence of storage on the total phenols content and antioxidant activity of the cranberrybush (Viburnum opulus L.) fruits extract. Revista de Chimie. 2012;63(5):463–464.
  17. Dietz BM, Hajirahimkhan A, Dunlap TL, Bolton JL. Botanicals and their bioactive phytochemicals for women’s health. Pharmacological Reviews. 2016;68(4):1026–1037.
  18. Staszowska-Karkut M, Materska M. Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutrients. 2020;12(2).
  19. Cvetković D, Stanojević L, Zvezdanović J, Savić S, Ilić D, Karabegović I. Aronia leaves at the end of harvest season – Promising source of phenolic compounds, macro- and microelements. Scientia Horticulturae. 2018;239:17–25.
  20. Tian Y, Puganen A, Alakomi H-L, Uusitupa A, Saarela M, Yang B. Antioxidative and antibacterial activities of aqueous ethanol extracts of berries, leaves, and branches of berry plants. Food Research International. 2018;106:291–303.
  21. Usov AI, Smirnova GP, Klochkova NG. Polysaccharides of algae: 55. Polysaccharide composition of several brown algae from Kamchatka. Russian Journal of Bioorganic Chemistry. 2001;27(6):444–448. (In Russ.).
  22. Sapozhnikov DI. Pigments of plastids of green plants and methods of their research. Moscow: Nauka; 1964. 129 p. (In Russ.).
  23. Deineka VI, Tret'akov MYu, Oleiniz YeYu, Pavlov AA, Deineka LA, Blinova IP, et al. Determination of anthocyanins and chlorogenic acids in fruits of aronia genus: The experience of chemosystematics. Chemistry of Plant Raw Materials. 2019;(2):161–167. (In Russ.).
  24. Suchowilska E, Bieńkowska T, Stuper-Szablewska K, Wiwart M. Concentrations of phenolic acids, flavonoids and carotenoids and the antioxidant activity of the grain, flour and bran of Triticum polonicum as compared with three cultivated wheat species. Agriculture. 2020;10(12).
  25. Kukushkina T, Zykov A, Obukhova L. Common cuff (Alchemilla vulgaris L.) as a source of medicines. Actual problems of creation of new medicinal preparations of natural origin. St. Petersburg; 2003. 69 p. (In Russ.).
  26. Kramer JKG, Blais L, Fouchard RC, Melnyk RA, Kallury KMR. A rapid method for the determination of vitamin E forms in tissues and diet by high-performance liquid chromatography using a normal-phase diol column. Lipids. 1997;32(3):323–330.
  27. Ozel MZ, Gogus F, Yagci S, Hamilton JF, Lewis AC. Determination of volatile nitrosamines in various meat products using comprehensive gas chromatography-nitrogen chemiluminescence detection. Food and Chemical Toxicology. 2010;48(11):3268–3273.
  28. Zabelina ON, Saloutin VI, Chupakhin ON. Analysis of polychlorinated biphenyl mixtures by gas chromatography. Journal of Analytical Chemistry. 2010;65(11):1098–1108.
  29. Official method of analytical chemists, 17th edn. Gaithersburg: Association of Official Analytical Chemists, 2000.
  30. Molyneux P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology. 2004;26(2):211–219.
  31. Saetan U, Nontasak P, Palasin K, Saelim H, Wonglapsuwan M, Mayakun J, et al. Potential health benefits of fucoidan from the brown seaweeds Sargassum plagiophyllum and Sargassum polycystum. Journal of Applied Phycology. 2021;33(5):3357–3364.
  32. Yoo HJ, You D-J, Lee K-W. Characterization and immunomodulatory effects of high molecular weight fucoidan fraction from the sporophyll of Undaria pinnatifida in cyclophosphamide-induced immunosuppressed mice. Marine Drugs. 2019;17(8).
  33. Kordjazi M, Etemadian Y, Shabanpour B, Pourashouri P. Chemical composition antioxidant and antimicrobial activities of fucoidan extracted from two species of brown seaweeds (Sargassum ilicifolium and S.angustifolium) around Qeshm Island. Iranian Journal of Fisheries Sciences. 2019;18(3):457–475.
  34. Khilchenko SR, Zaporozhets TS, Zvyagintseva TN, Shevchenko NM, Besednova NN. Fucoidans from brown algae: the influence of molecular architecture features on functional activity. Antibiotics and Chemotherapy. 2018;63(9–10):69–79. (In Russ.).
  35. Zvyagintseva TN, Usoltseva RV, Shevchenko NM, Surits VV, Imbs TI, Malyarenko OS, et al. Structural diversity of fucoidans and their radioprotective effect. Carbohydrate Polymers. 2021;273.
  36. Besednova NN, Andryukov BG, Zaporozhets TS, Kryzhanovsky SP, Fedyanina LN, Kuznetsova TA, et al. Antiviral effects of polyphenols from marine algae. Biomedicines. 2021;9(2).
  37. Besednova NN, Zaporozhets TS, Kuznetsova TA, Makarenkova ID, Kryzhanovsky SP, Fedyanina LN, et al. Extracts and marine algae polysaccharides in therapy and prevention of inflammatory diseases of the intestine. Marine Drugs. 2020;18(6).
  38. Li J, Guo C, Wu J. Fucoidan: Biological activity in liver diseases. American Journal of Chinese Medicine. 2020;48(7):1617–1632.
  39. Hentati F, Delattre C, Ursu AV, Desbrières J, Le Cerf D, Gardarin C, et al. Structural characterization and antioxidant activity of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira compressa. Carbohydrate Polymers. 2018;198:589–600.
  40. Arias-Borrego A, Velasco I, Gómez-Ariza JL, García-Barrera T. Iodine deficiency disturbs the metabolic profile and elemental composition of human breast milk. Food Chemistry. 2022;371.
  41. Lukyanchuk VD, Kravets DS, Korobkov AA. Biological role of iodine and pharmacocorrection of its insufficiency (Methodological recommendations). Sovremennaya Pediatriya. 2006;11(2):88–94. (In Ukr.).
  42. Skalnaya MG. Iodine: The biological role and significance for medical practice. Trace Elements in Medicine. 2018;19(2):3–11. (In Russ.).
  43. Erpel F, Mateos R, Pérez-Jiménez J, Pérez-Correa JR. Phlorotannins: From isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential. Food Research International. 2020;137.
Как цитировать?
Tabakaev AV, Tabakaeva OV, Prikhodko YuV. Functional instant beverages. Foods and Raw Materials. 2023;11(2):187–196.
О журнале