ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Enthalpy of Phase Transition and Prediction of Phase Equilibria in Systems of Glycols and Glycol Ethers

The PCEAS model was used to study the liquid–solid and liquid–vapor phase transitions at constant pressure in systems containing glycols and glycol ethers. This method is based on minimizing the excess Gibbs energy over the solvation parameter, which takes into account the processes of association of molecules in various phases. To compute the diagrams, the data on enthalpy and phase transition temperatures of pure components are required, while the information about the interactions in the binary system is not necessary. We present analytical expressions for the enthalpy of vaporization and enthalpy of melting of glycols and glycol ethers obtained with the theory of similarity using molecular weight, critical temperature, temperature of the triple point, and the number of carbon atoms in the molecule as the parameters. In the absence of information about the critical temperature, the enthalpy of vaporization may be calculated using the boiling point value. It is shown that the prediction of the enthalpy of melting and enthalpy of vaporization allows us to calculate of the phase diagram, as well as the azeotropic and eutectic parameters in water–glycol ether and glycol ether–alkane systems.
modeling, glycol, glycol ether, PCEAS, enthalpy of vaporization, melting enthalpy, thermodynamic similarity, liquid–solid equilibrium, liquid–vapor equilibrium, eutectics, azeotrope
  1. Grenner, A., Kontogeorgis, G. M., Nicolas von Solms, and Michelsen, M. L., Application of PC-SAFT to glycol containing systems – PC-SAFT towards a predictive approach, Fluid Phase Equilibria, 2007, vol. 261, no. 1-2, pp. 248–257;
  2. Chen, L.-F., Soriano, A. N., and Li, M.-H., Vapour pressures and densities of the mixed-solvent desiccants (glycols + water + salts), J. Chem. Thermodynamics, 2009, vol. 41, no. 6, pp. 724–730;
  3. Garrido, N. M., Folas, G. K., and Kontogeorgis, G. M., Modelling of phase equilibria of glycol ethers mixtures using an association model, Fluid Phase Equilibria, 2008, vol. 273, no. 1-2, pp. 11–20;
  4. Kenisarin, M., and Mahkamov, K., Solar energy storage using phase change material, Renewable and Sustainable Energy Reviews, 2007, vol. 11, no. 9, pp. 1913 – 1965;
  5. Filippov, L. P., Prognozirovanie teplofizicheskikh svoistv zhidkostei i gazov (Predicting Thermal Physical Properties of Liquids and Gases), Мoscow: Energoatomizdat, 1988.
  6. Basarova, P., and Svoboda, V., Prediction of the enthalpy of vaporization by the group contribution method, Fluid Phase Equilibria, 1995, vol. 105, no. 1, pp. 27–47;
  7. Marrero, J., and Gani, R., Group-contribution based estimation of pure component properties. Fluid Phase Equilibria, 2001, vol. 183–184, pp. 183–208;
  8. Gharagheizi, F., Determination of normal boiling vaporization enthalpy using a new molecular-based model, Fluid Phase Equilibria, 2012, vol. 317, pp. 43–51;
  9. Reid, R., Prausnitz, J. M., and Sherwood, Т. K., Svoistva zhidkostei i gazov (The Properties of Gases and Liquids), Leningrad: Khimiya, 1982.
  10. Kikic, I., and Vetere, A., Evaluation of several literature equations to predict the vaporization enthalpies at the normal boiling point, Fluid Phase Equilibria, 2011, vol. 309, pp. 151–154;
  11. Nesterov, I. A., Nesterova, T. N., Nazmutdinov, A. G., et al, Prediction of critical temperatures of the liquid–vapor equilibrium for organic compounds, Zh. Fiz. Khim. (J. Physical Chemistry), 2006, vol. 80, no 11, pp. 2032–2040.
  12. Nesterova, T. N., and Nesterov, I. A. Kriticheskie temperatury i davleniya organicheskikh soedinenii. Analiz sostoyaniya bazy dannykh i razvitie metodov prognozirovaniya (Critical temperatyre and pressure values of organic compounds. Analysis of database conditions and development of methods of predicition), Samara: Izdatel´stvo Samarskogo nauchnogo tsentra RAN, 2009.
  13. Meyra, A. G., Kuz, V. A., and Zarragoicoechea, G. J., Universal behavior of the enthalpy of vaporization: an empirical equation, Fluid Phase Equilibria, 2004, vol. 218, pp. 205–207;
  14. Dyment, O. N., Kazansky, K. S., and Miroshnikov, A. M., Glycols and other derivatives of propylene oxide and ethylene, Moskow: Khimiya, 1976.
  15. Esina, Z. N., Korchuganova, M. R., and Murashkin, V. V., Mathematical modeling of the liquid–solid phase transition, Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel’naya tekhnika i informatika (Tomsk State University Bulletin. Management, computer engineering, and informatics), 2011, vol. 3, no. 16, pp. 13−23.
  16. Esina, Z. N., Murashkin, V. V., and Korchuganova, M. R., Physical and mathematical model of the solid–gas equilibrium at constant pressure, Vestnik Kemerovskogo gosudarstvennogo universiteta (Kemerovo State University Bulletin), 2013,vol. 2–1, no. 54, pp. 72–80.
  17. Esina, Z. N., Murashkin, V. V., and Korchuganova, M. R., «Phase Chart Eutectic and Azeotropic System (PCEAS)»: State registration certificate of an application software № 2012618394 (RU) – № 2012616324; filed 25.07.2012; registered in the catalog of the application software, Moscow, September 17, 2012.
  18. Ogorodnikov, S. K., Lesteva, T. M., and Kogan, V. B., Azeotropnye smesi. Spravochnik (Azeotropic Mixtures. Reference Book), Kogan, V. B., Ed., Leningrad: Khimiya, 1971.
How to quote?
About journal