ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Technology Development for the Food Industry: A Conceptual Model

The information available on high technology in food industry is systematized. Different approaches to the development and integration of scientific knowledge are discussed. According to the European Institute for Food Processing (EU-IFP), there are three possible areas where a breakthrough in food science can occur: biotechnology (BIOTECH), nanotechnology (NANO), and information and communication technology (ICT). A transition is expected of high technology in food industry to convergent technologies in a combination with cognitive science (COGNITIVE). The four components of high technology are analyzed using food industry examples. We believe that the transfer of scientific knowledge into food industry can facilitate the technological development of the Russian agroindustrial complex.
high technology, convergent technologies, food industry, biotechnology, nanotechnology, information technology, cognitive technologies
  1. Atomic power for Europe, The New York Times, Feb. 4, 1957, p. 17.
  2. Metz, R., Market place: keeping an eye on big trends, The New York Times, Nov. 4, 1969, p.64.
  3. Berdyugin, D.V., Evaluation of the science and technology potential of high-tech industries in China, Izvest. IGEA, 2008, no. 5 (61).
  4. Metz, R., Market place: so what made E.D.S. plunge? The New York Times, Nov. 11, 1971, p. 72.
  5. Converging Technologies for Improving Human Performance Nanotechnology, Biotechnology, Information Technology and Cognitive Science. NSF/DOC-Sponsored Report, Roco, M.C. and Bainbridge, W.S., Eds., Arlington: National Science Foundation, 2002, p. 482.
  6. Managing Nano-Bio-Info-Cogno Innovations: Converging Technologies in Society, Bainbridge, W.S. and Roco, M.C., Eds., New York: Springer, 2005.
  7. Canton, J., NBIC convergent technologies and the innovation economy: challenges and opportunities for the 21st century, in Managing Nano-Bio-Info-Cogno Innovations: Converging Technologies in Society, New York: Springer, 2006.
  8. Velichkovskii, B.M., Vartanov, A.V., and Shevchik, S.A., Systemic role of cognitive studies in the development of converging technologies, Vestn. Tomsk. Gos. Univ., 2010, no. 334, pp. 186–191.
  9. The Convention on Biological Diversity, United Nations, 1992.
  10. Comprehensive Program for Biotechnology Development in the Russian Federation for the Period until 2020 (VP-P8-2322), Apr. 24, 2012, no. 1853p-P8, Moscow: RF Gov., 2012.
  11. Drexler, K.E., Nanotechnology: the past and the future, Science, 1992, vol. 255, no. 5042, pp. 268–269.
  12. Tomalia, D.A., The dendritic state, Materials Today, 2005, vol. 8, no. 3, pp. 34–46. doi: 10.1016/S1369-7021(05)00746-7.
  13. Roco, M.C., Mirkin, C.A., and Hersam, M.C., Nanotechnology research directions for societal needs in 2020: summary of international study, J. Nanoparticle Res., 2011, vol. 13, no. 3, pp. 897–919. doi: 10.1007/s11051-011-0275.
  14. Doyle, M., Nanotechnology: a brief literature review, in Food Research Institute: Briefings, Univ. Wisconsin-Madison, 2006, pp. 1–10. .
  15. Aguilera, J.M., Why food microstructure? J. Food Eng., 2005, vol. 67, nos. 1–2, pp. 3–11.
  16. Blundell, J.E. and Thurlby, P.L., Experimental manipulations of eating advances in animal models for studying anorectic agents, Pharm. Therapeut., 1987, vol. 34, no. 3, pp. 349–401.
  17. Rashidi, L. and Khosravi-Darani, K., The applications of nanotechnology in food industry, Crit. Rev. Food. Sci. Nutr., 2011, vol. 51, no. 8, pp. 723–730. doi: 10.1080/10408391003785417
  18. Tentony, L., A model-based approach to the assessment of physicochemical properties of drug delivery materials, Comput. Chem. Eng., 2003, vol. 27, no. 6, pp. 803–812. doi: 10.1016/S0098-1354(02)00266-1
  19. Thierry, B., Drug nanocarriers and functional nanoparticles: applications in cancer therapy, Curr. Drug Deliv., 2009, vol. 6, no. 4, pp. 391–403. doi: org/10.2174/156720109789000474
  20. Kang, W., Chae, J., Cho, Y., Lee, J., and Kim, S., Multiplex imaging of single tumor cells using quantum-dot-conjugated aptamers, Small, 2009, vol. 5, no. 22, pp. 2519–2522. doi: 10.1002/smll.200900848
  21. Rickman, J. M. and LeSar, R., Computational materials research, Ann. Rev. Mater. Res., 2002, vol. 32, no. 1. doi: 10.1146/
  22. Gao, H., Modelling strategies for nano- and biomaterials, in European White Book on Fundamental Research in Materials Science, Germany: Max Planck Inst., 2001, pp. 144–148.
  23. Belting, M. and Wittrup, A., Macromolecular drug delivery: basic principles and therapeutic applications, Mol. Biotech., 2009, vol. 43, no. 1, pp. 89–94. doi: 10.1007/s12033-009-9185-5
  24. Belting, M., Wittrup, A., Developments in macromolecular drug delivery, Methods Mol. Biol., 2009, vol. 480, pp. 1–10. doi: 10.1007/978-1-59745-429-2_1.
  25. Diekmann, S. and Lindhorst, T., Dendrimers, Rev. Mol. Biotech., 2002, vol. 90, pp. 157–158. doi: 10.1016/S1389-0352(01)00074-5
  26. Newkome, G. and Shreiner, C., Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1-2 branching motifs: an overview of the divergent procedures, Polymer, 2008, vol. 49, no. 1, pp. 1–173. doi: 10.1016/j.polymer.2007.10.021
  27. Jang, W. D., Kamruzzaman Selim, K. M., and Lee, C., Bioinspired application of dendrimers: from biomimicry to biomedical applications, Prog. Polymer Sci., 2009, vol. 34, no. 1, pp. 1–23. doi: 10.1016/j.progpolymsci.2008.08.003
  28. Lee, W., Piao, L., Park, C., Lim, Y., Do, Y., Yoon, S., and Kim, S., Facile synthesis and size control of spherical aggregates composed of Cu2O nanoparticles, J. Colloid Interface Sci., 2010, vol. 342, no 1, pp. 198–201. doi: 10.1016/j.jcis.2009.10.027
  29. Murali Mohan, Y., Vimala, K., Thomas, V., Varaprasad, K., Sreedhar, B., Bajpai, S., and Mohana Raju, K., Controlling of silver nanoparticles structure by hydrogel networks, J. Colloid Interface Sci., 2010, vol. 342, no. 1, pp. 73–82. doi: 10.1016/j.jcis.2009.10.008.
  30. Prasad, K. and Jha, A., Biosynthesis of CdS nanoparticles: an improved green and rapid procedure, J. Colloid Interface Sci., 2010, vol. 342, no.1, pp. 68–72. doi: 10.1016/j.jcis.2009.10.003
  31. Fan, D. and Hao, J., Magnetic aligned vesicles, J. Colloid Interface Sci., 2010, vol. 342, no. 1, pp. 43–48. doi: 10.1016/j.jcis.2009.10.013.
  32. Lee, H., Yang, H., and Holloway, P., Functionalized CdS nanospheres and nanorods, Z. Phys. B: Condens. Matter, 2009, vol. 404, no. 22, pp. 4364–4369, doi: 10.1016/j.physb.2009.09.020.
  33. Bewick, S., Yang, R. and Zhang, M., Complex mathematical models of biology at the nanoscale. Wiley Interdiscip. Rev. Nanomed. Nanobiotech., 2009, vol. 1, no. 6, pp. 650–659. doi: 10.1002/wnan.61.
  34. Shapiro, B., Bindewald, E., Kasprzak, W., and Yingling, Y., Protocols for the in silico design of RNA nanostructures, Methods Mol. Biol., 2008, vol. 474, pp. 93–115. doi: 10.1007/978-1-59745-480-3_7.
  35. Tkachenko, E.I. and Uspenskii, Yu.P., Pitanie, mikrobiotsenoz i intellekt cheloveka (Nutrition, Microbiocenosis, and Human Intellect), St. Petersburg: Spets. Literatura, 2006.
  36. Zhilenkova, O.G., Shenderov, B.A., Klodt, P.M., Kudrin, V.S., and Oleskin, A.V., Dairy products as a potential source of compounds modifying consumer behavior, Moloch. Prom-st., 2013, no. 10, c. 45–49.
  37. Baldwin, E.A., Bai, J., Plotto, A., and Dea, S., Electronic noses and tongues: applications for the food and pharmaceutical industries, Sensors, 2011, vol. 11, no. 5, pp. 4744–4766. doi: 10.3390/s110504744.
How to quote?
About journal