ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Inhibited and non-inhibited lipid oxidation in colloidal solutions: A review

Abstract
Fatty acids possess special structural features that allow them to form surfactants. Their weak C–H bonds trigger oxidation by the radical-chain mechanism. As a result, various colloidal solutions develop in aqueous media, and the new conditions affect the mechanism of fatty acid oxidation.
This review summarizes scientific publications on fatty acid oxidation in colloidal systems registered in Scopus and WoS in 2014–2024. It involved articles on the kinetics of fatty acid oxidation in water-lipid colloidal solutions, e.g., emulsions and micellar solutions.
The main stages of lipid oxidation – initiation, continuation, and chain termination – depend on various factors. The oxidation rate can be affected by the composition of the system, oxygen concentration, distribution of the initiator between the lipid or aqueous phases, type of surfactant, and pH. Each of these factors can change the mechanism of radical chain oxidation, thus affecting the shelf-life and quality of food products. The behavior of antioxidants in colloidal solutions differs from that in true solutions. The oxidation rate, the concentrations of various components, and the antioxidant activity in water-lipid solutions can be measured by different methods. These days, machine learning and artificial intelligence predict oxidation rates and assess the properties of antioxidants in various food systems. If combined together, they improve their predictive ability of the oxidation rate of fatty acids in colloidal solutions.
By establishing the mechanism of fatty acid oxidation in colloidal systems, food scientists design the optimal conditions to preserve antioxidants in various foods and increase their shelf-life.
Keywords
Fatty acids, lipid peroxidation, radical chain oxidation, micelles, emulsion, antioxidants
REFERENCES
  1. Polmann G, Badia V, Danielski R, Ferreira SRS, Block JM. Nuts and nut-based products: A meta-analysis from intake health benefits and functional characteristics from recovered constituents. Food Reviews International. 2023;39(8):5021–5047. https://doi.org/10.1080/87559129.2022.2045495
  2. Xu H, Turchini GM, Francis DS, Liang M, Mock TS, Rombenso A, et al. Are fish what they eat? A fatty acid’s perspective. Progress in Lipid Research. 2020;80:101064. https://doi.org/10.1016/j.plipres.2020.101064
  3. Cherif A, Slama A. Stability and change in fatty acids composition of soybean, corn, and sunflower oils during the heating process. Journal of Food Quality. 2022;2022(1):6761029. https://doi.org/10.1155/2022/6761029
  4. Heck RT, Lorenzo JM, dos Santos BA, Cichoski AJ, de Menezes CR, Campagnol PCB. Microencapsulation of healthier oils: An efficient strategy to improve the lipid profile of meat products. Current Opinion in Food Science. 2020;40:6–12. https://doi.org/10.1016/j.cofs.2020.04.010
  5. Cerdó T, Ruíz A, Acuña I, Nieto-Ruiz A, Diéguez E, Sepúlveda-Valbuena N, et al. A synbiotics, long chain polyunsaturated fatty acids, and milk fat globule membranes supplemented formula modulates microbiota maturation and neurodevelopment. Clinical Nutrition. 2022;41(8):1697–1711. https://doi.org/10.1016/j.clnu.2022.05.013
  6. Niki E. Lipid peroxidation. In: Chatgilialoglu C, Studer A, editors. Encyclopedia of radicals in chemistry, biology and materials. John Wiley & Sons; 2012. pp. 1577–1598. https://doi.org/10.1002/9781119953678.rad052
  7. Musakhanian J, Rodier J-D, Dave M. Oxidative stability in lipid formulations: A review of the mechanisms, drivers, and inhibitors of oxidation. AAPS PharmSciTech. 2022;23:151. https://doi.org/10.1208/s12249-022-02282-0
  8. Villeneuve P, Bourlieu-Lacanal C, Durand E, Lecomte J, McClements DJ, Decker EA. Lipid oxidation in emulsions and bulk oils: A review of the importance of micelles. Critical Reviews in Food Science and Nutrition. 2023;63(20):4687–4727. https://doi.org/10.1080/10408398.2021.2006138
  9. Laguerre M, Tenon M, Bily A, Birtić S. Toward a spatiotemporal model of oxidation in lipid dispersions: A hypothesis-driven review. European Journal of Lipid Science and Technology. 2020;122(3):1900209. https://doi.org/10.1002/ejlt.201900209
  10. Miyashita K. Paradox of omega-3 PUFA oxidation. European Journal of Lipid Science and Technology. 2014;116(10):1268–1279. https://doi.org/10.1002/ejlt.201400114
  11. Villeneuve P, Durand E, Decker EA. The need for a new step in the study of lipid oxidation in heterophasic systems. Journal of Agricultural and Food Chemistry. 2018;66(32):8433–8434. https://doi.org/10.1021/acs.jafc.8b03603
  12. Denisov ET, Afanas’ev IB. Oxidation and antioxidants in organic chemistry and biology. Boca Raton: CRC Press; 2005. 1024 p. https://doi.org/10.1201/9781420030853
  13. Nikolayev AI, Safiullin RL, Komissarov ND. Reaction kinetics of alkyl and alkylperoxide radicals. Reaction Kinetics and Catalysis Letters. 1986;31:355–359. https://doi.org/10.1007/BF02072970
  14. Yin H, Xu L, Porter NA. Free radical lipid peroxidation: Mechanisms and analysis. Chemical Reviews. 2011;111(10):5944–5972. https://doi.org/10.1021/cr200084z
  15. Kitaguchi H, Ohkubo K, Ogo S, Fukuzumi S. Additivity rule holds in the hydrogen transfer reactivity of unsaturated fatty acids with a peroxyl radical: Mechanistic insight into lipoxygenase. Chemical Communications. 2006;(9):979–981. https://doi.org/10.1039/b515004c
  16. Tikhonov IV, Moskalenko IV, Pliss EM, Fomich MA, Bekish AV, Shmanai VV. Kinetic isotope H/D effect in the oxidation of ethers of linoleic acid in solutions. Russian Journal of Physical Chemistry B. 2017;11:395–399. https://doi.org/10.1134/S1990793117030113
  17. Qi YY, Gong T, Zhao PT, Niu YJ, Hu YY, Hu CY, et al. Hydroxytyrosyl oleate is a promising safe additive to inhibit the oxidation of olive oil. Food Control. 2023;153:109895. https://doi.org/10.1016/j.foodcont.2023.109895
  18. Lamberson CR, Xu L, Muchalski H, Montenegro-Burke JR, Shmanai VV, Bekish AV, et al. Unusual kinetic isotope effects of deuterium reinforced polyunsaturated fatty acids in tocopherol-mediated free radical chain oxidations. Journal of the American Chemical Society. 2014;136(3):838–841. https://doi.org/10.1021/ja410569g
  19. Andreyev AYu, Tsui HS, Milne GL, Shmanai VV, Bekish AV, Fomich MA, et al. Isotope-reinforced polyunsaturated fatty acids protect mitochondria from oxidative stress. Free Radical Biology and Medicine. 2015;82:63–72. https://doi.org/10.1016/j.freeradbiomed.2014.12.023
  20. Shah R, Shchepinov MS, Pratt DA. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Central Science. 2018;4(3):387–396. https://doi.org/10.1021/acscentsci.7b00589
  21. Liu Y, Bell BA, Song Y, Zhang K, Anderson B, Axelsen PH, et al. Deuterated docosahexaenoic acid protects against oxidative stress and geographic atrophy-like retinal degeneration in a mouse model with iron overload. Aging Cell. 2022;21(4):e13579. https://doi.org/10.1111/acel.13579
  22. Shchepinov MS, Chou VP, Pollock E, Langston JW, Cantor CR, Molinari RJ, et al. Isotopic reinforcement of essential polyunsaturated fatty acids diminishes nigrostriatal degeneration in a mouse model of Parkinson’s disease. Toxicology Letters. 2011;207(2):97–103. https://doi.org/10.1016/j.toxlet.2011.07.020
  23. Hill S, Lamberson CR, Xu L, To R, Tsui HS, Shmanai VV, et al. Small amounts of isotope-reinforced polyunsaturated fatty acids suppress lipid autoxidation. Free Radical Biology and Medicine. 2012;53(4):893–906. https://doi.org/10.1016/j.freeradbiomed.2012.06.004
  24. Fomich MA, Bekish AV, Vidovic D, Lamberson CR, Lysenko IL, Lawrence P, et al. Full library of (Bis-allyl)-deuterated arachidonic acids: Synthesis and analytical verification. ChemistrySelect. 2016;1(15):4758–4764. https://doi.org/10.1002/slct.201600955
  25. Tsikas D. Combating atherosclerosis with heavy PUFAs: Deuteron not proton is the first. Atherosclerosis. 2017;264:79–82. https://doi.org/10.1016/j.atherosclerosis.2017.07.018
  26. Johnson DR, Decker EA. The role of oxygen in lipid oxidation reactions: A review. Annual Review of Food Science and Technology. 2015;6:171–190. https://doi.org/10.1146/annurev-food-022814-015532
  27. Koelsch CM, Downes TW, Labuza TP. Hexanal formation via lipid oxidation as a function of oxygen concentration: Measurement and kinetics. Journal of Food Science. 1991;56(3):816–820. https://doi.org/10.1111/j.1365-2621.1991.tb05389.x
  28. Moskalenko IV, Grobov AM, Pliss EM. The rate constants of cross recombination reaction of alkyl and peroxyl radicals during the oxidation of styrene, acrylonitrile and methyl methacrylate. Bashkir Chemical Journal. 2015;22(4):60–62. (In Russ.). https://www.elibrary.ru/VIURYT
  29. Bozorg-Haddad O, Delpasand M, Loáiciga HA. Water quality, hygiene, and health. In: Bozorg-Haddad O, editor. Economical, political, and social issues in water resources. Elsevier; 2021. pp. 217–257. https://doi.org/10.1016/B978-0-323-90567-1.00008-5
  30. Zhang J, Freund MA, Culler MD, Yang R, Chen PB, Park Y, et al. How to stabilize ω-3 polyunsaturated fatty acids (PUFAs) in an animal feeding study? – Effects of the temperature, oxygen level, and antioxidant on oxidative stability of ω-3 PUFAs in a mouse diet. Journal of Agricultural and Food Chemistry. 2020;68(46):13146–13153. https://doi.org/10.1021/acs.jafc.9b08298
  31. Nissim R, Batchelor-Mcauley C, Compton RG. Measuring oxygen solubility in micelles. ChemElectroChem. 2015;3(1):105–109. https://doi.org/10.1002/celc.201500380
  32. Roppongi T, Miyagawa Y, Fujita H, Adachi S. Effect of oil-droplet diameter on lipid oxidation in O/W emulsions. Journal of Oleo Science. 2021;70(9):1225–1230. https://doi.org/10.5650/jos.ess21145
  33. Sirick A, Lednev S, Moskalenko I, Machtin V, Pliss E. Kinetic features of chain initiation reactions during the oxidation of unsaturated compounds in media of different polarity. Reaction Kinetics, Mechanisms and Catalysis. 2016;117:405–415. https://doi.org/10.1007/s11144-015-0957-6
  34. Petrova SN, Sultanova IK. Oxidative stability of sunflower oil in the presence of organic solvents. ChemChemTech. 2010;53(4):105–107. (In Russ.).
  35. Wawrzykowski J, Kankofer M. Superoxide dismutase from hen’s egg yolk can protect fatty acids from peroxidative damage. European Food Research and Technology. 2014;239:1041–1049. https://doi.org/10.1007/s00217-014-2300-2
  36. Ke L, Tan Y, Xu Y, Gao G, Wang H, Luo S, et al. Effects of peroxidase and superoxide dismutase on physicochemical stability of fish oil-in-water emulsion. npj Science of Food. 2022;6:31. https://doi.org/10.1038/s41538-022-00146-2
  37. Ke L, Xu Y, Gao G, Wang H, Yu Z, Zhou J, et al. Catalase to demulsify oil-in-water fish oil-polysorbate emulsion and affect lipid oxidation. Food Research International. 2020;133:109169. https://doi.org/10.1016/j.foodres.2020.109169
  38. Bielski BH, Arudi RL, Sutherland MW. A study of the reactivity of HO2/O2- with unsaturated fatty acids. The Journal of Biological Chemistry. 1983;258(8):4759–4761.
  39. Moskalenko IV, Tikhonov IV, Pliss EM, Fomich MA, Shmanai VV, Rusakov AI. Kinetic isotope effect in the oxidation reaction of linoleic acid esters in micelles. Russian Journal of Physical Chemistry B. 2018;12:987–991. https://doi.org/10.1134/S1990793118050196
  40. Pliss EM, Machtin VA, Grobov AM, Pliss RE, Sirick AV. Kinetics and mechanism of radical-chain oxidation of 1,2-substituted ethylene and 1,4-substituted butadiene-1,3. International Journal of Chemical Kinetics. 2017;49(3):173–181. https://doi.org/10.1002/kin.21065
  41. Pliss RE, Machtin VA, Loshadkin DV, Rusakov AI, Pliss EM. The mechanism of inhibited oxidation of norbornene series bicycloolefins. Petroleum Chemistry. 2014;54:382–386. https://doi.org/10.1134/S0965544114050089
  42. Zaikov GE, Howard JA, Ingold KU. Absolute rate constants for hydrocarbon autoxidation. XIII. Aldehydes: photo-oxidation, co-oxidation, and inhibition. Canadian Journal of Chemistry. 1969;47:3017–3029. https://doi.org/10.1139/v69-500
  43. Pliss E, Machtin V, Soloviev M, Grobov A, Pliss R, Sirik A, et al. The role of solvation in the kinetics and the mechanism of hydroperoxide radicals addition to π-bonds of 1,2-diphenylethylene and 1,4-diphenylbutadiene-1,3. International Journal of Chemical Kinetics. 2018;50(6):397–409. https://doi.org/10.1002/kin.21169
  44. Pliss E, Machtin V, Pliss R, Sirik A, Loshadkin D, Rusakov A. The effect of solvation on the reactivity of 1,1-substituted ethylenes in hydroperoxyl radical addition reactions. Reaction Kinetics, Mechanisms and Catalysis. 2018;123:559–571. https://doi.org/10.1007/s11144-017-1336-2
  45. Foti MC, Sortino S, Ingold KU. New insight into solvent effects on the formal HOO. + HOO. reaction. Chemistry – A European Journal. 2005;11(6):1942–1948. https://doi.org/10.1002/chem.200400661
  46. Cedrowski J, Litwinienko G, Baschieri A, Amorati R. Hydroperoxyl radicals (HOO.): Vitamin E regeneration and H-bond effects on the hydrogen atom transfer. Chemistry – A European Journal. 2016;22(46):16441–16445. https://doi.org/10.1002/chem.201603722
  47. Baschieri A, Valgimigli L, Gabbanini S, DiLabio GA, Romero-Montalvo E, Amorati R. Extremely fast hydrogen atom transfer between nitroxides and HOO· radicals and implication for catalytic coantioxidant systems. Journal of the American Chemical Society. 2018;140(32):10354–10362. https://doi.org/10.1021/jacs.8b06336
  48. Barclay LRC. 1992 Syntex Award Lecture. Model biomembranes: Quantitative studies of peroxidation, antioxidant action, partitioning, and oxidative stress. Canadian Journal of Chemistry. 2011;71(1):1–16. https://doi.org/10.1139/v93-001
  49. Musialik M, Kita M, Litwinienko G. Initiation of lipid autoxidation by ABAP at pH 4–10 in SDS micelles. Organic and Biomolecular Chemistry. 2008;6(4):677–681. https://doi.org/10.1039/b715089j
  50. Konya KG, Paul T, Lin S, Lusztyk J, Ingold KU. Laser flash photolysis studies on the first superoxide thermal source. First direct measurements of the rates of solvent-assisted 1,2-hydrogen atom shifts and a proposed new mechanism for this unusual rearrangement. Journal of the American Chemical Society. 2000;122(31):7518–7527. https://doi.org/10.1021/ja993570b
  51. Ingold KU, Paul T, Young MJ, Doiron L. Invention of the first azo compound to serve as a superoxide thermal source under physiological conditions: Concept, synthesis, and chemical properties. Journal of the American Chemical Society. 1997;119(50):12364–12365. https://doi.org/10.1021/ja972886l
  52. Yakupova LR, Safiullin RL. Kinetics of the initiated and inhibited oxidation of methyl oleate in homogeneous and aqueous emulsion media. Kinetics and Catalysis. 2011;52:785–792. https://doi.org/10.1134/S002315841106022X
  53. Niki E, Saito M, Yoshikawa Y, Yamamoto Y, Kamiya Y. Oxidation of lipids. XII. Inhibition of oxidation of soybean phosphatidylcholine and methyl linoleate in aqueous dispersions by uric acid. Bulletin of the Chemical Society of Japan. 1986;59(2):471–477. https://doi.org/10.1246/bcsj.59.471
  54. Yazu K, Yamamoto Y, Ukegawa K, Niki E. Mechanism of lower oxidizability of eicosapentaenoate than linoleate in aqueous micelles. Lipids. 1996;31(3):337–340. https://doi.org/10.1007/BF02529881
  55. Pyrzynska K, Pękal A. Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples. Analytical Methods. 2013;5(17):4288–4295. https://doi.org/10.1039/c3ay40367j
  56. Olshyk VN, Melsitova IV, Yurkova IL. Influence of lipids with hydroxyl-containing head groups on Fe2+ (Cu2+)/H2O2-mediated transformation of phospholipids in model membranes. Chemistry and Physics of Lipids. 2014;177:1–7. https://doi.org/10.1016/j.chemphyslip.2013.10.010
  57. Li X, Wu G, Huang J, Zhang H, Jin Q, Wang X. Kinetic models to understand the coexistence of formation and decomposition of hydroperoxide during lipid oxidation. Food Research International. 2020;136:109314. https://doi.org/10.1016/j.foodres.2020.109314
  58. Wang G, Wang T. Oxidative stability of egg and soy lecithin as affected by transition metal ions and pH in emulsion. Journal of Agricultural and Food Chemistry. 2008;56(23):11424–11431. https://doi.org/10.1021/jf8022832
  59. Wang S. A comparative study of fenton and fenton-like reaction kinetics in decolourisation of wastewater. Dyes and Pigments. 2008;76(3):714–720. https://doi.org/10.1016/j.dyepig.2007.01.012
  60. Pinchuk I, Lichtenberg D. Deuterium kinetic isotope effect (DKIE) in copper-induced LDL peroxidation: Interrelated effects of on inhibition and propagation. Chemistry and Physics of Lipids. 2017;205:42–47. https://doi.org/10.1016/j.chemphyslip.2017.04.009
  61. Pinchuk I, Lichtenberg D. The effect of compartmentalization on the kinetics of transition metal ions-induced lipoprotein peroxidation. Chemistry and Physics of Lipids. 2016;195:39–46. https://doi.org/10.1016/j.chemphyslip.2015.11.004
  62. Yurkova IL. Free-radical reactions of glycerolipids and sphingolipids. Russian Chemical Reviews. 2012;81(2):175–190. https://doi.org/10.1070/RC2012v81n02ABEH004205
  63. Trunova NA, Krugovov DA, Bogdanova YuG, Kasaikina OT. Micellar free radical initiators. Moscow University Chemistry Bulletin. 2008;63(4):214–218. https://doi.org/10.3103/S0027131408040093
  64. Kasaikina OT, Krugovov DA, Mengele EA, Berezin MP, Fokin DA. Heterogeneous radical-generating catalysts based on cationic surfactants. Petroleum Chemistry. 2015;55:679–682. https://doi.org/10.1134/S0965544115080101
  65. Potapova NV, Kasaikina OT, Berezin MP, Plashchina IG. Catalytic generation of radicals in supramolecular systems with acetylcholine. Kinetics and Catalysis. 2020;61:786–793. https://doi.org/10.1134/S0023158420050079
  66. Potapova NV, Kasaikina OT, Berezin MP, Plashchina IG, Gulin AA. Supramolecular catalysts for the radical destruction of hydroperoxides based on choline derivatives. Kinetics and Catalysis. 2023;64:67–73. https://doi.org/10.1134/S0023158423010056
  67. Krugovov DA, Gatin AK, Potapova NV, Kondratovich VG, Mengele EA, Kasaikina OT. The effect of a magnetic field on the generation of free radicals in the interaction of quaternary ammonium compounds with hydroperoxides. Russian Journal of Physical Chemistry B. 2024;18:656–662. https://doi.org/10.1134/S199079312470012X
  68. Tikhonov IV, Pliss EM, Borodin LI, Sen VD. Superoxide radicals in the kinetics of nitroxide-inhibited oxidation of methyl linoleate in micelles. Russian Journal of Physical Chemistry B. 2017;11:400–402. https://doi.org/10.1134/S1990793117030253
  69. Moskalenko IV, Borodin LI, Novikov AS. Oxidation of methyl linoleate in Triton X‐100 micelles initiated by lipid‐soluble initiator 2,2′‐azobis (2,4‐dimethylvaleronitrile). ChemistrySelect. 2023;8(25):e202301357. https://doi.org/10.1002/slct.202301357
  70. Antunes F, Pinto RE, Barclay LRC, Vinqvist MR. Determination of propagation and termination rate constants by using an extension to the rotating-sector method: Application to PLPC and DLPC bilayers. International Journal of Chemical Kinetics. 1998;30(10):753–767. https://doi.org/10.1002/(SICI)1097-4601(1998)30:10%3C753::AID-KIN8%3E3.0.CO;2-U
  71. Garrec J, Monari A, Assfeld X, Mir LM, Tarek M. Lipid peroxidation in membranes: The peroxyl radical does not “float.” The Journal of Physical Chemistry Letters. 2014;5(10):1653–1658. https://doi.org/10.1021/jz500502q
  72. Roginskii VA. Kinetics of the chain oxidation of methyl linoleate in aqueous micellar solutions of sodium dodecyl sulfate. Kinetics and Catalysis. 1996;37(4):488–494. https://elibrary.ru/LDTWWR
  73. Moskalenko IV, Petrova SYu, Pliss EM, Rusakov AI, Buchachenko AL. Effect of microheterogeneity on the kinetics of oxidation of methyl linoleate in micelles. Russian Journal of Physical Chemistry B. 2016;35(4):36–39. (In Russ.). https://doi.org/10.7868/S0207401X16040087
  74. Jiang T, Charcosset C. Encapsulation of curcumin within oil-in-water emulsions prepared by premix membrane emulsification: Impact of droplet size and carrier oil on the chemical stability of curcumin. Food Research International. 2022;157:111475. https://doi.org/10.1016/j.foodres.2022.111475
  75. Costa M, Freiría-Gándara J, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C. Effects of droplet size on the interfacial concentrations of antioxidants in fish and olive oil-in-water emulsions and nanoemulsions and on their oxidative stability. Journal of Colloid and Interface Science. 2020;562:352–362. https://doi.org/10.1016/j.jcis.2019.12.011
  76. ten Klooster S, Boerkamp VJP, Hennebelle M, van Duynhoven JPM, Schroën K, Berton-Carabin CC. Unravelling the effect of droplet size on lipid oxidation in O/W emulsions by using microfluidics. Scientific Reports. 2024;14:8895. https://doi.org/10.1038/s41598-024-59170-9
  77. Soloviev M, Moskalenko I, Pliss E. Quantum chemical evaluation of the role of HO2⋅ radicals in the kinetics of the methyl linoleate oxidation in micelles. Reaction Kinetics, Mechanisms and Catalysis. 2019;127:561–581. https://doi.org/10.1007/s11144-019-01613-w
  78. Roginsky V, Barsukova T. Superoxide dismutase inhibits lipid peroxidation in micelles. Chemistry and Physics of Lipids. 2001;111(1):87–91. https://doi.org/10.1016/S0009-3084(01)00148-7
  79. Tikhonov IV, Pliss EM, Borodin LI, Sen’ VD. Effect of superoxide dismutase on the oxidation of methyl linoleate in micelles inhibited by nitroxyl radicals. Russian Chemical Bulletin. 2016;65:2985–2987. https://doi.org/10.1007/s11172-016-1690-7
  80. Moskalenko IV, Tikhonov IV. H/D Kinetic solvent isotope effect in the oxidation of methyl linoleate in Triton X-100 micelles. Russian Journal of Physical Chemistry B. 2022;16:602–605. https://doi.org/10.1134/S1990793122040121
  81. Harrison KA, Haidasz EA, Griesser M, Pratt DA. Inhibition of hydrocarbon autoxidation by nitroxide-catalyzed cross-dismutation of hydroperoxyl and alkylperoxyl radicals. Chemical Science. 2018;9(28):6068–6079. https://doi.org/10.1039/C8SC01575A
  82. Laguerre M, Bily A, Roller M, Birtić S. Mass transport phenomena in lipid oxidation and antioxidation. Annual Review of Food Science and Technology. 2017;8:391–411. https://doi.org/10.1146/annurev-food-030216-025812
  83. Kasaikina OT, Mengele EA, Plashchina IG. Oxidation of nonionic surfactants with molecular oxygen. Colloid Journal. 2016;78:767–771. https://doi.org/10.1134/S1061933X16060065
  84. Loshadkin DV, Pliss EM, Kasaikina OT. Features of methyl linoleate oxidation in Triton X-100 micellar buffer solutions. Russian Journal of Applied Chemistry. 2020;93:1090–1095. https://doi.org/10.1134/S1070427220070216
  85. Pliss EM, Loshadkin DV, Grobov AM, Kuznetsova TS, Rusakov AI. Kinetic study and simulation of methyl linoleate oxidation in micelles. Russian Journal of Physical Chemistry B. 2015;9:127–131. https://doi.org/10.1134/S1990793115010091
  86. Bielski BHJ, Cabelli DE, Arudi RL, Ross AB. Reactivity of HO2/O−2 radicals in aqueous solution. Journal of Physical and Chemical Reference Data. 1985;14:1041–1100. https://doi.org/10.1063/1.555739
  87. Belovolova LV. Reactive oxygen species in aqueous media (a review). Optics and Spectroscopy. 2020;128:932–951. https://doi.org/10.1134/S0030400X20070036
  88. Pliss EM, Soloviev ME, Loshadkin DV, Molodochkina SV, Kasaikina OT. Kinetic model of polyunsaturated fatty acids oxidation in micelles. Chemistry and Physics of Lipids. 2021;237:105089. https://doi.org/10.1016/j.chemphyslip.2021.105089
  89. Molodochkina SV, Loshadkin DV, Pliss EM. Kinetics and mechanism of methyl linoleate oxidation in cetyltrimethylammonium bromide micelles. Russian Chemical Bulletin. 2024;73:728–732. https://doi.org/10.1007/s11172-024-4183-0
  90. Molodochkina SV, Loshadkin DV, Pliss EM. Kinetic features of methylinoleate oxidation in micelles of sodium dodecyl sulfate. Russian Journal of Physical Chemistry B. 2024;18:136–142. https://doi.org/10.1134/S1990793124010160
  91. Denisov ET, Denisova TG. Handbook of antioxidants: bond dissociation energies, rate constants, activation energies, and enthalpies of reactions. CRC Press; 2000. 289 p.
  92. Haahr A-M, Jacobsen C. Emulsifier type, metal chelation and pH affect oxidative stability of n-3-enriched emulsions. European Journal of Lipid Science and Technology. 2008;110(10):949–961. https://doi.org/10.1002/ejlt.200800035
  93. Xu P, Zheng Y, Zhu X, Li S, Zhou C. L-lysine and L-arginine inhibit the oxidation of lipids and proteins of emulsion sausage by chelating iron ion and scavenging radical. Asian-Australasian Journal of Animal Sciences. 2018;31(6):905–913. https://doi.org/10.5713/ajas.17.0617
  94. Liu J, Guo Y, Li X, Si T, Mcclements DJ, Ma C. Effects of chelating agents and salts on interfacial properties and lipid oxidation in oil-in-water emulsions. Journal of Agricultural and Food Chemistry. 2019;67(49):13718–13727.
  95. Cui L, Decker EA. Phospholipids in foods: Prooxidants or antioxidants? Journal of the Science of Food and Agriculture. 2015;96(1):18–31. https://doi.org/10.1002/jsfa.7320
  96. Guzun-Cojocaru T, Koev C, Yordanov M, Karbowiak T, Cases E, Cayot P. Oxidative stability of oil-in-water emulsions containing iron chelates: Transfer of iron from chelates to milk proteins at interface. Food Chemistry. 2011;125(2):326–333. https://doi.org/10.1016/j.foodchem.2010.08.004
  97. Daoud S, Bou-Maroun E, Waschatko G, Cayot P. Lipid oxidation in oil-in-water emulsions: Iron complexation by buffer ions and transfer on the interface as a possible mechanism. Food Chemistry. 2021;342:128273. https://doi.org/10.1016/j.foodchem.2020.128273
  98. Johnson DR, Tian F, Roman MJ, Decker EA, Goddard JM. Development of iron-chelating poly(ethylene terephthalate) packaging for inhibiting lipid oxidation in oil-in-water emulsions. Journal of Agricultural and Food Chemistry. 2015;63(20):5055–5060.
  99. Tikhonov IV, Pliss EM, Borodin LI, Sen’ VD, Kuznetsova TS. Stable nitroxyl radicals and hydroxylamines as inhibitors of methyl linoleate oxidation in micelles. Russian Chemical Bulletin. 2015;64:2438–2443. https://doi.org/10.1007/s11172-015-1175-0
  100. Tikhonov IV, Pliss EM, Borodin LI, Sen´ VD. Five-membered cyclic nitroxyl radicals as inhibitors of the oxidation of methyl linoleate in micelles. Russian Chemical Bulletin. 2015;64:2869–2871. https://doi.org/10.1007/s11172-015-1240-8
  101. Merkx DWH, Plankensteiner L, Yu Y, Wierenga PA, Hennebelle M, van Duynhoven JPM. Evaluation of PBN spin-trapped radicals as early markers of lipid oxidation in mayonnaise. Food Chemistry. 2021;334:127578. https://doi.org/10.1016/j.foodchem.2020.127578
  102. Zhao Q, Wang M, Zhang W, Zhao W, Yang R. Impact of phosphatidylcholine and phosphatidylethanolamine on the oxidative stability of stripped peanut oil and bulk peanut oil. Food Chemistry. 2020;311:125962. https://doi.org/10.1016/j.foodchem.2019.125962
  103. Krudopp H, Sönnichsen FD, Steffen-Heins A. Partitioning of nitroxides in dispersed systems investigated by ultrafiltration, EPR and NMR spectroscopy. Journal of Colloid and Interface Science. 2015;452:15–23. https://doi.org/10.1016/j.jcis.2015.03.001
  104. Amorati R, Pedulli GF, Pratt DA, Valgimigli L. TEMPO reacts with oxygen-centered radicals under acidic conditions. Chemical Communications. 2010;46(28):5139–5141. https://doi.org/10.1039/C0CC00547A
  105. Tikhonov IV, Sen’ VD, Borodin LI, Pliss EM, Golubev VA, Rusakov AI. Effect of the structure of nitroxyl radicals on the kinetics of their acid-catalyzed disproportionation. Journal of Physical Organic Chemistry. 2014;27(2):114–120. https://doi.org/10.1002/poc.3247
  106. Sen’ VD, Tikhonov IV, Borodin LI, Pliss EM, Golubev VA, Syroeshkin MA, et al. Kinetics and thermodynamics of reversible disproportionation-comproportionation in redox triad oxoammonium cations – nitroxyl radicals – hydroxylamines. Journal of Physical Organic Chemistry. 2015;28(1):17–24. https://doi.org/10.1002/poc.3392
  107. Amorati R, Guo Y, Budhlall BM, Barry CF, Cao D, Challa SSRK. Tandem hydroperoxyl-alkylperoxyl radical quenching by an engineered nanoporous cerium oxide nanoparticle macrostructure (NCeONP): toward efficient solid-state autoxidation inhibitors. ACS Omega. 2023;8(43):40174–40183. https://doi.org/10.1021/acsomega.3c03654
  108. Mollica F, Gelabert I, Amorati R. Synergic antioxidant effects of the essential oil component γ-terpinene on high-temperature oil oxidation. ACS Food Science and Technology. 2022;2(1):180–186. https://doi.org/10.1021/acsfoodscitech.1c00399
  109. Opeida IA, Sheparovych RB. Inhibition by hydrogen peroxide in the radical chain oxidation of hydrocarbons by molecular oxygen. Theoretical and Experimental Chemistry. 2019;55:36–42. https://doi.org/10.1007/s11237-019-09593-7
  110. Mukai K, Oka W, Watanabe K, Egawa Y, Nagaoka S, Terao J. Kinetic study of free-radical-scavenging action of flavonoids in homogeneous and aqueous Triton X-100 micellar solutions. The Journal of Physical Chemistry A. 1997;101(20):3746–3653. https://doi.org/10.1021/jp9706745
  111. Aizpurua-Olaizola O, Navarro P, Vallejo A, Olivares M, Etxebarria N, Usobiaga A. Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes. Food Chemistry. 2016;190:614–621. https://doi.org/10.1016/j.foodchem.2015.05.117
  112. Liang H, Liang Y, Dong J, Lu J. Tea extraction methods in relation to control of epimerization of tea catechins. Journal of the Science of Food and Agriculture. 2007;87(9):1748–1752. https://doi.org/10.1002/jsfa.2913
  113. Huang S-W, Hopia A, Schwarz K, Frankel EN, German JB. Antioxidant activity of α-tocopherol and trolox in different lipid substrates: Bulk oils vs oil-in-water emulsions. Journal of Agricultural and Food Chemistry. 1996;44(2):444–452. https://doi.org/10.1021/jf9505685
  114. Cuomo F, Cinelli G, Chirascu C, Marconi E, Lopez F. Antioxidant effect of vitamins in olive oil emulsion. Colloids and Interfaces. 2020;4(2):23. https://doi.org/10.3390/colloids4020023
  115. Zhu Y, Yang J, Qin L, He C, Zhou S. Selecting phenolics by means of thermodynamics for scavenging free radicals in camellia oil induced by heating. LWT. 2024;201:116222. https://doi.org/10.1016/j.lwt.2024.116222
  116. Kazin VN, Guzov EA, Moshareva VA, Pliss EM. Influence of a constant magnetic field on the mechanism of adrenaline oxidation. Magnetochemistry. 2022;8(7):70. https://doi.org/10.3390/magnetochemistry8070070
  117. Umek N. Cyclization step of noradrenaline and adrenaline autoxidation: A quantum chemical study. RSC Advances. 2020;10(28):16650–16658. https://doi.org/10.1039/D0RA02713H
  118. Ebrahimi P, Bayram I, Lante A, Decker EA. Antioxidant and prooxidant activity of acid‐hydrolyzed phenolic extracts of sugar beet leaves in oil‐in‐water emulsions. Journal of the American Oil Chemists' Society. 2024;102(2):339–349. https://doi.org/10.1002/aocs.12891
  119. Pan Y, Qin R, Hou M, Xue J, Zhou M, Xu L, et al. The interactions of polyphenols with Fe and their application in Fenton/Fenton-like reactions. Separation and Purification Technology. 2022;300:121831. https://doi.org/10.1016/j.seppur.2022.121831
  120. Vo QV, Nam PC, Thong NM, Trung NT, Phan C-TD, Mechler A. Antioxidant motifs in flavonoids: O–H versus C–H bond dissociation. ACS Omega. 2019;4(5):8935–8942. https://doi.org/10.1021/acsomega.9b00677
  121. Budilarto ES, Kamal-Eldin A. The supramolecular chemistry of lipid oxidation and antioxidation in bulk oils. European Journal of Lipid Science and Technology. 2015;117(8):1095–1137. https://doi.org/10.1002/ejlt.201400200
  122. Frankel EN, Huang S-W, Kanner J, German JB. Interfacial phenomena in the evaluation of antioxidants: Bulk oils vs emulsions. Journal of Agricultural and Food Chemistry. 1994;42(5):1054–1059. https://doi.org/10.1021/jf00041a001
  123. Nahas R, Berdahl D. The polar paradox: how an imperfect conceptual framework accelerated our knowledge of antioxidant behavior. In: Logan A, Nienaber U, Pan X, editors. Lipid oxidation: Challenges in food systems. Academic Press, AOCS Press; 2013. pp. 243–260. https://doi.org/10.1016/B978-0-9830791-6-3.50010-2
  124. Aliaga C, López de Arbina A, Rezende MC. “Cut-off” effect of antioxidants and/or probes of variable lipophilicity in microheterogeneous media. Food Chemistry. 2016;206:119–123. https://doi.org/10.1016/j.foodchem.2016.03.024
  125. Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Diaz C, Romsted LS. A direct correlation between the antioxidant efficiencies of caffeic acid and its alkyl esters and their concentrations in the interfacial region of olive oil emulsions. The pseudophase model interpretation of the “cut-off” effect. Food Chemistry. 2015;175:233–242. https://doi.org/10.1016/j.foodchem.2014.10.016
  126. Laguerre M, López Giraldo LJ, Lecomte J, Figueroa-Espinoza M-C, Baréa B, Weiss J, et al. Chain length affects antioxidant properties of chlorogenate esters in emulsion: The cutoff theory behind the polar paradox. Journal of Agricultural and Food Chemistry. 2009;57(23):11335–11342. https://doi.org/10.1021/jf9026266
  127. Zhong Y, Shahidi F. Antioxidant behavior in bulk oil: Limitations of polar paradox theory. Journal of Agricultural and Food Chemistry. 2012;60(1):4–6. https://doi.org/10.1021/jf204165g
  128. Shahidi F, Zhong Y. Revisiting the polar paradox theory: A critical overview. Journal of Agricultural and Food Chemistry. 2011;59(8):3499–3504. https://doi.org/10.1021/jf104750m
  129. Romsted LS, Bravo-Díaz C. Modeling chemical reactivity in emulsions. Current Opinion in Colloid and Interface Science. 2013;18(1):3–14. https://doi.org/10.1016/j.cocis.2012.11.001
  130. Losada Barreiro S, Bravo-Díaz C, Paiva-Martins F, Romsted LS. Maxima in antioxidant distributions and efficiencies with increasing hydrophobicity of gallic acid and its alkyl esters. The pseudophase model interpretation of the “cutoff effect”. Journal of Agricultural and Food Chemistry. 2013;61(26):6533–6543. https://doi.org/10.1021/jf400981x
  131. Laguerre M, Bayrasy C, Panya A, Weiss J, McClements DJ, Lecomte J, et al. What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox. Critical Reviews in Food Science and Nutrition. 2015;55(2):183–201. https://doi.org/10.1080/10408398.2011.650335
  132. Bravo-Díaz C, Romsted LS, Liu C, Losada-Barreiro S, Pastoriza-Gallego MJ, Gao X, et al. To model chemical reactivity in heterogeneous emulsions, think homogeneous microemulsions. Langmuir. 2015;31(33):8961–8979. https://doi.org/10.1021/acs.langmuir.5b00112
  133. Tamer TM, ElTantawy MM, Brussevich A, Nebalueva A, Novikov A, Moskalenko IV, et al. Functionalization of chitosan with poly aromatic hydroxyl molecules for improving its antibacterial and antioxidant properties: Practical and theoretical studies. International Journal of Biological Macromolecules. 2023;234:123687. https://doi.org/10.1016/j.ijbiomac.2023.123687
  134. Stepanić V, Gall Trošelj K, Lučić B, Marković Z, Amić D. Bond dissociation free energy as a general parameter for flavonoid radical scavenging activity. Food Chemistry. 2013;141(2):1562–1570. https://doi.org/10.1016/j.foodchem.2013.03.072
  135. Antonijević M, Avdović E, Simijonović D, Milanović Z, Žižić M, Marković Z. Investigation of novel radical scavenging mechanisms in the alkaline environment: Green, sustainable and environmentally friendly antioxidative agent(s). Science of The Total Environment. 2024;912:169307. https://doi.org/10.1016/j.scitotenv.2023.169307
  136. Amorati R, Baschieri A, Cowden A, Valgimigli L. The antioxidant activity of quercetin in water solution. Biomimetics. 2017;2(3):9. https://doi.org/10.3390/biomimetics2030009
  137. Amorati R, Baschieri A, Morroni G, Gambino R, Valgimigli L. Peroxyl radical reactions in water solution: A gym for proton-coupled electron-transfer theories. Chemistry – A European Journal. 2016;22(23):7924–7934. https://doi.org/10.1002/chem.201504492
  138. Tichonov I, Roginsky V, Pliss E. Natural polyphenols as chain-breaking antioxidants during methyl linoleate peroxidation. European Journal of Lipid Science and Technology. 2010;112(8):887–893. https://doi.org/10.1002/ejlt.200900282
  139. Tikhonov I, Roginsky V, Pliss E. The chain‐breaking antioxidant activity of phenolic compounds with different numbers of O‐H groups as determined during the oxidation of styrene. International Journal of Chemical Kinetics. 2009;41(2):92–100. https://doi.org/10.1002/kin.20377
  140. Jodko-Piórecka K, Litwinienko G. Antioxidant activity of dopamine and L-DOPA in lipid micelles and their cooperation with an analogue of α-tocopherol. Free Radical Biology and Medicine. 2015;83:1–11. https://doi.org/10.1016/j.freeradbiomed.2015.02.006
  141. Loshadkin D, Roginsky V, Pliss E. Substituted p-hydroquinones as a chain-breaking antioxidant during the oxidation of styrene. International Journal of Chemical Kinetics. 2002;34(3):162–171. https://doi.org/10.1002/kin.10041
  142. Amorati R, Baschieri A, Valgimigli L. Measuring antioxidant activity in bioorganic samples by the differential oxygen uptake apparatus: Recent advances. Journal of Chemistry. 2017;2017(1):6369358. https://doi.org/10.1155/2017/6369358
  143. Yakupova LR, Proskurjakov SG, Zaripov RN, Rameev ShR, Safiullin RL. Measurement of the reaction rate proceeding with gas absorption or gas evolution. Butlerov Communications. 2011;28(19):71–78. (In Russ.). https://www.elibrary.ru/OWFPXP
  144. Roginsky VA, Tashlitsky VN, Skulachev VP. Chain-breaking antioxidant activity of reduced forms of mitochondria-targeted quinones, a novel type of geroprotectors. Aging. 2009;1(5):481–489. https://doi.org/10.18632/aging.100049
  145. Jansen J, Knoll J, Beyreuther E, Pawelke J, Skuza R, Hanley R, et al. Does FLASH deplete oxygen? Experimental evaluation for photons, protons, and carbon ions. Medical Physics. 2021;48(7):3982–3990. https://doi.org/10.1002/mp.14917
  146. Quaranta M, Murkovic M, Klimant I. A new method to measure oxygen solubility in organic solvents through optical oxygen sensing. Analyst. 2013;138(21):6243–6245. https://doi.org/10.1039/C3AN36782G
  147. Guo Y, Cariola A, Matera R, Gabbanini S, Valgimigli L. Real-time oxygen sensing as a powerful tool to investigate tyrosinase kinetics allows revising mechanism and activity of inhibition by glabridin. Food Chemistry. 2022;393:133423. https://doi.org/10.1016/j.foodchem.2022.133423
  148. Genovese D, Baschieri A, Vona D, Baboi RE, Mollica F, Prodi L, et al. Nitroxides as building blocks for nanoantioxidants. ACS Applied Materials and Interfaces. 2021;13(27):31996–32004. https://doi.org/10.1021/acsami.1c06674
  149. Tacchini P, Lesch A, Neequaye A, Lagger G, Liu J, Cortés‐Salazar F, et al. Electrochemical pseudo‐titration of water‐soluble antioxidants. Electroanalysis. 2013;25(4):922–930. https://doi.org/10.1002/elan.201200590
  150. Lesch A, Cortés-Salazar F, Prudent M, Delobel J, Rastgar S, Lion N, et al. Large scale inkjet-printing of carbon nanotubes electrodes for antioxidant assays in blood bags. Journal of Electroanalytical Chemistry. 2014;717–718:61–68. https://doi.org/10.1016/j.jelechem.2013.12.027
  151. Souza LP, Calegari F, Zarbin AJG, Marcolino-Júnior LH, Bergamini MF. Voltammetric determination of the antioxidant capacity in wine samples using a carbon nanotube modified electrode. Journal of Agricultural and Food Chemistry. 2011;59(14):7620–7625. https://doi.org/10.1021/jf2005589
  152. Smirnov E, Peljo P, Scanlon MD, Girault HH. Interfacial redox catalysis on gold nanofilms at soft interfaces. ACS Nano. 2015;9(6):6565–6575. https://doi.org/10.1021/acsnano.5b02547
  153. Peljo P, Smirnov E, Girault HH. Heterogeneous versus homogeneous electron transfer reactions at liquid–liquid interfaces: The wrong question? Journal of Electroanalytical Chemistry. 2016;779:187–198. https://doi.org/10.1016/j.jelechem.2016.02.023
  154. Li G, Chen Y, Liu F, Bi W, Wang C, Lu D, et al. Portable visual and electrochemical detection of hydrogen peroxide release from living cells based on dual-functional Pt-Ni hydrogels. Microsystems and Nanoengineering. 2023;9:152. https://doi.org/10.1038/s41378-023-00623-y
  155. Rajendran S, Manoj D, Suresh R, Vasseghian Y, Ghfar AA, Sharma G, et al. Electrochemical detection of hydrogen peroxide using micro and nanoporous CeO2 catalysts. Environmental Research. 2022;214:113961. https://doi.org/10.1016/j.envres.2022.113961
  156. Peljo P, Scanlon MD, Olaya AJ, Rivier L, Smirnov E, Girault HH. Redox electrocatalysis of floating nanoparticles: determining electrocatalytic properties without the influence of solid supports. The Journal of Physical Chemistry Letters. 2017;8(15):3564–3575. https://doi.org/10.1021/acs.jpclett.7b00685
  157. Scanlon MD, Peljo P, Méndez MA, Smirnov E, Girault HH. Charging and discharging at the nanoscale: Fermi level equilibration of metallic nanoparticles. Chemical Science. 2015;6(5):2705–2720. https://doi.org/10.1039/C5SC00461F
  158. Nagaraju DH, Pandey RK, Lakshminarayanan V. Electrocatalytic studies of Cytochrome c functionalized single walled carbon nanotubes on self-assembled monolayer of 4-ATP on gold. Journal of Electroanalytical Chemistry. 2009;627(1–2):63–68. https://doi.org/10.1016/j.jelechem.2008.12.020
  159. Smirnov E, Peljo P, Scanlon MD, Girault HH. Gold nanofilm redox catalysis for oxygen reduction at soft interfaces. Electrochimica Acta. 2016;197:362–373. https://doi.org/10.1016/j.electacta.2015.10.104
  160. Gotti G, Evrard D, Gros P. Simultaneous electrochemical detection of oxygen (O2) and hydrogen peroxide (H2O2) in neutral media. International Journal of Electrochemical Science. 2023;18(9):100262. https://doi.org/10.1016/j.ijoes.2023.100262
  161. Saad B, Wai WT, Lim BP, Saleh MI. Flow injection determination of peroxide value in edible oils using triiodide detector. Analytica Chimica Acta. 2006;565(2):261–270. https://doi.org/10.1016/j.aca.2006.02.039
  162. Kwon CW, Park K-M, Park JW, Lee J, Choi SJ, Chang P-S. Rapid and sensitive determination of lipid oxidation using the reagent kit based on spectrophotometry (FOODLABfat system). Journal of Chemistry. 2016;2016(1):1468743. https://doi.org/10.1155/2016/1468743
  163. Feng X, Yan J, Chen Y, Tan C, Lin H, Ge X. Effects of Fe(III) and Fe(II) on the peroxidation value of soybean oil under different conditions and product characterization. Journal of Food Processing and Preservation. 2020;44(7):e14515. https://doi.org/10.1111/jfpp.14515
  164. Zhang N, Li Y, Wen S, Sun Y, Chen J, Gao Y, et al. Analytical methods for determining the peroxide value of edible oils: A mini-review. Food Chemistry. 2021;358:129834. https://doi.org/10.1016/j.foodchem.2021.129834
  165. Ivanova AS, Merkuleva AD, Andreev SV, Sakharov KA. Method for determination of hydrogen peroxide in adulterated milk using high performance liquid chromatography. Food Chemistry. 2019;283:431–436. https://doi.org/10.1016/j.foodchem.2019.01.051
  166. Yu X, van de Voort FR, Sedman J. Determination of peroxide value of edible oils by FTIR spectroscopy with the use of the spectral reconstitution technique. Talanta. 2007;74(2):241–246. https://doi.org/10.1016/j.talanta.2007.06.004
  167. Deyrieux C, Villeneuve P, Baréa B, Decker EA, Guiller I, Michel Salaun F, et al. Measurement of peroxide values in oils by triphenylphosphine/triphenylphosphine oxide (TPP/TPPO) assay coupled with FTIR-ATR spectroscopy: Comparison with iodometric titration. European Journal of Lipid Science and Technology. 2018;120(8):1800109. https://doi.org/10.1002/ejlt.201800109
  168. Lopez C, Genot C. Multidimensional characterization of dietary lipids [Internet]. New York: Humana; 2024. 379 p. https://doi.org/10.1007/978-1-0716-3758-6
  169. Wind J, Villeneuve P, Taty MPE, Figueroa-Espinoza MC, Baréa B, Pradelles R, et al. Improving the triphenylphosphine/triphenylphosphine oxide (TPP/TPPO)-based method for the absolute and accurate quantification by FTIR-ATR of hydroperoxides in oils or lipid extracts. European Journal of Lipid Science and Technology. 2024;126(9):2400030. https://doi.org/10.1002/ejlt.202400030
  170. Roohi H, Rajabi M. Iodometric determination of hydroperoxides in hydrocarbon autoxidation reactions using triphenylphosphine solution as a titrant: A new protocol. Industrial and Engineering Chemistry Research. 2018;57(20):6805–6814. https://doi.org/10.1021/acs.iecr.7b05403
  171. Benrabah R, El Sayah Z, Glaude PA, Arnoux P, Fournet R, Sirjean B. Quantification of hydroperoxides in liquid fuels: A systematic comparison of titration and absorption methods and their coupling to HPLC. Fuel. 2024;365:131218. https://doi.org/10.1016/j.fuel.2024.131218
  172. Faroux JM, Ureta MM, Tymczyszyn EE, Gómez-Zavaglia A. An overview of peroxidation reactions using liposomes as model systems and analytical methods as monitoring tools. Colloids and Surfaces B: Biointerfaces. 2020;195:111254. https://doi.org/10.1016/j.colsurfb.2020.111254
  173. Jiang Y, Su M, Yu T, Du S, Liao L, Wang H, et al. Quantitative determination of peroxide value of edible oil by algorithm-assisted liquid interfacial surface enhanced Raman spectroscopy. Food Chemistry. 2021;344:128709. https://doi.org/10.1016/j.foodchem.2020.128709
  174. Killeen DP, Marshall SN, Burgess EJ, Gordon KC, Perry NB. Raman spectroscopy of fish oil capsules: Polyunsaturated fatty acid quantitation plus detection of ethyl esters and oxidation. Journal of Agricultural and Food Chemistry. 2017;65(17):3551–3558. https://doi.org/10.1021/acs.jafc.7b00099
  175. Du S, Su M, Jiang Y, Yu F, Xu Y, Lou X, et al. Direct discrimination of edible oil type, oxidation, and adulteration by liquid interfacial surface-enhanced Raman spectroscopy. ACS Sensors. 2019;4(7):1798–1805. https://doi.org/10.1021/acssensors.9b00354
  176. Qi Z, Akhmetzhanov T, Pavlova A, Smirnov E. Reusable SERS substrates based on gold nanoparticles for peptide detection. Sensors. 2023;23(14):6352. https://doi.org/10.3390/s23146352
  177. Langer J, de Aberasturi DJ, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, et al. Present and future of surface-enhanced Raman scattering. ACS Nano. 2020;14(1):28–117. https://doi.org/10.1021/acsnano.9b04224
  178. Li W, You Z, Cao D, Liu N. A machine learning-driven SERS platform for precise detection and analysis of vascular calcification. Analytical Methods. 2024;16(40):6829–6838. https://doi.org/10.1039/D4AY01061B
  179. Liu E, Han L, Fan X, Yang Z, Jia Z, Shi S, et al. New rapid detection method of total chlorogenic acids in plants using SERS based on reusable Cu2O–Ag substrate. Talanta. 2022;247:123552. https://doi.org/10.1016/j.talanta.2022.123552
  180. Aguilar-Hernández I, Afseth NK, López-Luke T, Contreras-Torres FF, Wold JP, Ornelas-Soto N. Surface enhanced Raman spectroscopy of phenolic antioxidants: A systematic evaluation of ferulic acid, p-coumaric acid, caffeic acid and sinapic acid. Vibrational Spectroscopy. 2017;89:113–122. https://doi.org/10.1016/j.vibspec.2017.02.002
  181. Huguenin J, Ould Saad Hamady S, Bourson P. Monitoring deprotonation of gallic acid by Raman spectroscopy. Journal of Raman Spectroscopy. 2015;46(11):1062–1066. https://doi.org/10.1002/jrs.4752
  182. Umaña M, Llull L, Bon J, Eim VS, Simal S. Artificial neural networks to optimize oil-in-water emulsion stability with orange by-products. Foods. 2022;11(23):3750. https://doi.org/10.3390/foods11233750
  183. Tachie CYE, Obiri-Ananey D, Alfaro-Cordoba M, Tawiah NA, Aryee ANA. Classification of oils and margarines by FTIR spectroscopy in tandem with machine learning. Food Chemistry. 2024;431:137077. https://doi.org/10.1016/j.foodchem.2023.137077
  184. Chen C, Husny J, Rabe S. Predicting fishiness off-flavour and identifying compounds of lipid oxidation in dairy powders by SPME-GC/MS and machine learning. International Dairy Journal. 2018;77:19–28. https://doi.org/10.1016/j.idairyj.2017.09.009
  185. Galvez-Llompart M, Zanni R, Manyes L, Meca G. Elucidating the mechanism of action of mycotoxins through machine learning-driven QSAR models: Focus on lipid peroxidation. Food and Chemical Toxicology. 2023;182:114120. https://doi.org/10.1016/j.fct.2023.114120
  186. Spink SS, Pilvar A, Wei LL, Frias J, Anders K, Franco ST, et al. Shortwave infrared diffuse optical wearable probe for quantification of water and lipid content in emulsion phantoms using deep learning. Journal of Biomedical Optics. 2023;28(9):094808. https://doi.org/10.1117/1.JBO.28.9.094808
  187. Idowu SO, Fatokun AA. Artificial intelligence (AI) to the rescue: Deploying machine learning to bridge the biorelevance gap in antioxidant assays. SLAS Technology. 2021;26(1):16–25. https://doi.org/10.1177/2472630320962716
  188. Cheng J, Sun J, Yao K, Xu M, Dai C. Multi-task convolutional neural network for simultaneous monitoring of lipid and protein oxidative damage in frozen-thawed pork using hyperspectral imaging. Meat Science. 2023;201:109196. https://doi.org/10.1016/j.meatsci.2023.109196
  189. Parra-Escudero C, Bayram I, Decker EA, Singh S, Corvalan CM, Lu J. A machine learning-guided modeling approach to the kinetics of α-tocopherol and myricetin synergism in bulk oil oxidation. Food Chemistry. 2024(463);141451. https://doi.org/10.1016/j.foodchem.2024.141451
  190. Fulkerson A, Bayram I, Decker EA, Lu J, Corvalan CM. Machine learning reveals parsimonious differential model for myricetin degradation from scarce data. 2023. https://doi.org/10.21203/rs.3.rs-3122091/v1
  191. Mallikarjunaiah SM. A deep learning feed-forward neural network framework for the solutions to singularly perturbed delay differential equations. Applied Soft Computing. 2023;148:110863. https://doi.org/10.1016/j.asoc.2023.110863
  192. Michoski C, Milosavljević M, Oliver T, Hatch DR. Solving differential equations using deep neural networks. Neurocomputing. 2020;399:193–212. https://doi.org/10.1016/j.neucom.2020.02.015
  193. Ruthotto L, Haber E. Deep neural networks motivated by partial differential equations. Journal of Mathematical Imaging and Vision. 2020;62:352–364. https://doi.org/10.1007/s10851-019-00903-1
How to quote?
About journal

Download
Contents
Abstract
Keywords
References