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Abstract: 
Fatty acids possess special structural features that allow them to form surfactants. Their weak C–H bonds trigger oxidation by 
the radical-chain mechanism. As a result, various colloidal solutions develop in aqueous media, and the new conditions affect 
the mechanism of fatty acid oxidation. 
This review summarizes scientific publications on fatty acid oxidation in colloidal systems registered in Scopus and WoS in 
2014–2024. It involved articles on the kinetics of fatty acid oxidation in water-lipid colloidal solutions, e.g., emulsions and 
micellar solutions. 
The main stages of lipid oxidation – initiation, continuation, and chain termination – depend on various factors. The oxidation 
rate can be affected by the composition of the system, oxygen concentration, distribution of the initiator between the lipid or 
aqueous phases, type of surfactant, and pH. Each of these factors can change the mechanism of radical chain oxidation, thus 
affecting the shelf-life and quality of food products. The behavior of antioxidants in colloidal solutions differs from that in true 
solutions. The oxidation rate, the concentrations of various components, and the antioxidant activity in water-lipid solutions 
can be measured by different methods. These days, machine learning and artificial intelligence predict oxidation rates and 
assess the properties of antioxidants in various food systems. If combined together, they improve their predictive ability of the 
oxidation rate of fatty acids in colloidal solutions. 
By establishing the mechanism of fatty acid oxidation in colloidal systems, food scientists design the optimal conditions to 
preserve antioxidants in various foods and increase their shelf-life.
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INTRODUCTION
Fatty acids are among the most crucial food com-

ponents. They are essential for human and animal nut- 
rition and health. Fatty acids are prevalent in various 
food products, e.g., nuts, fish, oils, meat, and dairy pro- 
ducts [1–5]. The fatty acids found in these foods typically  
contain 14–22 carbon atoms [6]. Their hydrocarbon 
chains may be fully saturated, or they may contain 1–6 
double bonds (usually in the cis-configuration), with a 
bis-allylic group between them. Figure 1 illustrates this 
kind of bond-dissociation energy.  

These two structural features lead to two key obser-
vations:

1. The structural residues of fatty acids are soluble 
in organic media, and the presence of easily removable 

acidic groups provides numerous opportunities for the 
development of fatty acids-based surfactants, e.g., phos-
pholipids.

2. Weak C–H bonds in unsaturated and polyunsatu- 
rated fatty acids facilitate oxidation, thereby reducing 
the shelf-life of food products.

Considering that many foods that contain water 
and fatty acids are surfactants, fatty acid oxidation oc-
curs not in their pure form, but rather in colloidal solu- 
tions, i.e., emulsions and micellar solutions. Recent 
reviews [7–10] address the process of fatty acid oxida-
tion in colloidal solutions. However, several unresolved 
issues remain despite the recent progress in colloidal 
studies [11]. For example, most reviews fail to consider  
the instrumental methods for determining oxidation 
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rates. Such issues as machine learning and artificial 
intelligence in predicting oxidation rates and inhibitor 
strengths also remain beyond their scope. Finally, most 
of them adhere to a strictly phenomenological perspec-
tive. This review focuses on examining the kinetics of 
fatty acid oxidation in colloidal solutions.

STUDY OBJECTS AND METHODS
This review covered publications registered in Google  

Scholar, ResearchGate, and Scopus in 2002–2023, with 
the focus on original studies published within the last 
10 years in peer-reviewed sources. The search involved 
such keywords as lipids oxidation, lipid oxidation in 
emulsion, lipid oxidation in micelles, antioxidants in 
emulsion, and machine learning lipid peroxidation. Prio- 
rity was given to articles published in specialized jour-
nals on the kinetics of radical chain reactions and food 
chemistry. 

RESULTS AND DISCUSSION
General issues of fatty acid oxidation. Oxidation 

mechanisms in colloidal solutions may differ signifi-
cantly from those in true solutions: their mechanisms 
are more complex (Fig. 2).

The mechanism of fatty acid oxidation in true solu-
tions is a variety of the free radical chain oxidation 
mechanism. It closely resembles the oxidation of hyd- 
rocarbons (Fig. 2) [12] and is identical for saturated 
fatty acids. At high oxygen concentrations (~ 10–3 M),  
the likelihood of Reactions 4 and 5 is virtually zero, as 
the rate of Reaction 1 is close to the diffusion rate [13]. 
The system contains almost no free alkyl radicals (L●). 
Consequently, the oxidation rate RO2, mol/(L·s)) (can be 
described by Eq. (1) [14]:
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where kn is the rate constant for the n-th reaction (Fig. 2),  
L/(mol·s); [LH] is the substrate concentration, mol/L; Ri 
is the initiation rate, mol/(L·s). The chain propagation 
is the rate-limiting step in free radical chain processes. 
Notably, the rate constant k2 for fatty acids is an addi-

tive function of the bis-allylic and allylic groups [15, 16], 
as illustrated by Eq. (2):

                             k2 = 4ka + 2nkba                             (2)

where is the rate constant for the abstraction of a hydro-
gen atom from the allylic group, L/(mol·s); is the rate 
constant for the abstraction of a hydrogen atom from 
the bis-allylic group, L/(mol·s). Considering that ka is 
much lower than kba, the greatest contribution comes 
from the bis-allylic groups. Thus, oxidation proceeds in 
a co-oxidation mode. The oxidation rate can be reduced 
by increasing the concentration of allylic groups. In [17], 
diluting fish oil with oleic acid-rich sunflower oils de-
creased the oxidation rate. Another method to reduce  
the oxidation rate involves protecting bis-allylic groups 
by replacing hydrogen with deuterium [18–21]. These 
substances proved effective antioxidants in model sys-
tems, as well as inhibitors of oxidative stress and rela- 
ted pathologies in biological systems [22, 23]. However, 
these substances are relatively expensive dietary supple-
ments [24], and their effects on the body remain under-
studied and questionable [25].

Oxygen is another important component that affects 
oxidation. At high oxygen concentrations, the oxidation 
rate follows Eq. (1). At low oxygen concentrations, Reac- 
tions 4 and 5 are also possible, and the oxidation rate ex- 
hibits a more complex dependence [26–28], as illustra- 
ted by Eq. (3):
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where R∞ is the oxidation rate calculated using Eq. (1); 
RO2 is the oxidation rate at a specific oxygen concentra-
tion, mol/(L·s); [O2] is the oxygen concentration, mol/L. 
Since the oxygen concentration in water is approxima- 
tely an order of magnitude lower than in organic sol-
vents [29], a high-water content in a water/oil system 
significantly reduces the overall oxygen concentration. 
Unfortunately, scientific literature rarely provides data 
on the effect of oxygen concentration on the oxidation 
rate of fatty acid derivatives [30]. The oxygen concentra- 

Figure 2 Mechanism of free radical chain oxidation

Figure 1 Structures of fatty acids, C–H bond energies, 
and rate constants for hydrogen abstraction from various 
functional groups
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tion within a micelle depends on the surfactant concen-
tration [31], and the surface area does not affect the rate 
of oxygen diffusion into the micelle [32].

Additionally, oxygen participates in autoxidation. 
The rates of auto-initiation are as low as ~ 10–8 mol/(L·s)  
at 70°C and can often be neglected. These processes com- 
bine two reactions [33], as illustrated below: 

                        LH + O2 → L● + HO2
●    

                      2LH + O2 → 2L● + H2O2

The mechanism of this third-order reaction apparently  
consists of two stages: first, a substrate-oxygen complex 
develops; second, it is attacked by a substrate molecule. 
From a chemical kinetics perspective, it is a relatively 
rare termolecular reaction. 

Thus, autoxidation produces not only fatty acid radi-
cals but also the hydroperoxyl radical (HO2

●) and hydro-
gen peroxide. Interestingly, polar solvents increase the 
rate of auto-initiation [33, 34] and reduce the proportion 
of termolecular reactions. This effect can be attribut-
ed to the disruption of the pre-reaction complex, which 
decreases the likelihood of the slow termolecular reac-
tion. In this respect, the kinetics of fatty acid oxidation 
in polar organic solvents requires further research. The 
formation of HO2

● was also reported in [35], which exa- 
mined the inhibition of autoxidation in various foods 
containing fatty acid residues by superoxide dismutase. 
Additionally, superoxide dismutase inhibited the oxida-
tion of fish oil emulsions [36], indicating the formation 
of HO2

●. The same authors determined that catalase also 
reduces the oxidation rate [37], which indirectly sup-
ports the formation of HO2

● during oxidation because 
catalase decomposes hydrogen peroxide.

As indicated in the previous paragraph, oxidation 
may trigger the formation of HO2

● radicals. Only one re-
search featured the rate constant for the reaction of hyd- 
rogen atom abstraction from fatty acids by the hydro- 
peroxyl radical [38]: it was approximately 103 L/(mol·s) 
for the bis-allylic group, while allylic groups did not  
react with HO2

●. Additionally, trans-isomers of linoleic 
acid also did not react with HO2

● [39]. For liquid-phase 
reactions, all other publications primarily include rate 
constants for the addition to the double bonds of certain 
vinyl compounds [40–42], the dependency of rate con-
stants on solvent polarity [43–45], and the reactivity of 
some inhibitors with HO2

● [46, 47].
Initiation in multiphase systems. The rate of auto- 

initiation is negligible for the kinetics of fatty acid oxi- 
dation. As a result, special initiators are needed to en-
hance the oxidation process. They can be water-soluble, 
e.g., AAPH, AMEP, SOTS-1; lipid-soluble, e.g., AIBN, 
AMVN, and Fenton-like or enzymatic catalysis, e.g., 
xanthine oxidase-xanthine [48–56]. In all the cases, the 
position of the initiator influences both the oxidation 
rate and its mechanism (Fig. 3).

From a kinetic perspective, the decomposition of hy-
droperoxides is a chain-branching event. This decompo-
sition occurs relatively slowly and is accelerated by tem-

perature or light [57]. Metal ions with variable valency 
may initiate the oxidation of lipoproteins in emulsions. 
Iron and copper ions are the most popular ones [58–61]. 
Yet, the initiation rate depends on multiple factors, such 
as pH or chelating agents. When studying oxidation ki-
netics with other types of initiation, this reaction is usu-
ally eliminated as an additional source of chain branch-
ing. For instance, solutions are prepared using deionized 
water, and further purification is achieved with ion- 
exchange resins.

Surfactants are often used to form micelles and emul- 
sions, except when the oxidation substrate itself acts as a 
surfactant, e.g., phospholipids [62]. As a rule, it is either 
non-ionic or anionic surfactants. Cationic surfactants, 
however, can degrade the formed hydroperoxides, lead-
ing to chain branching [63–66].

Hydroperoxides decompose under the effect of a mag-
netic field generated by cationic surfactants [67].

Water-soluble initiators are the most popular va- 
riant for initiation in micelles, e.g., AAPH (Fig. 4). In 
this case, the initiation rate depends on pH. At low pH, 
the initiation rate is higher than at neutral pH, and it 
is similarly elevated at high pH. The increased initia-
tion rate at low pH is attributed to the additional proto- 
nation in the diamine fragment, which enhances the 

Lipid solubility initiator
Air

Water solubility initiator

Figure 3 Reaction mechanisms in the presence of water-
soluble and lipid-soluble initiators

Figure 4 Radical formation during azo-initiator decomposition
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Coulomb interactions and increases the likelihood of 
the initiator cage exit [49].

SOTS-1 is a special case [51]. Upon decomposition in 
water, it generates a superoxide radical. To generate O2

●– 

(superoxide), it needs an enzymatic system of xanthine 
oxidase and hypoxanthine [68].

Lipid-soluble initiators are primarily used in emul-
sions and occasionally in micelles. However, the rate 
constants for initiation in micelles differ significantly 
from those in true solutions. For instance, ki(AMVN) is 
2.5×10–7 s–1 [54], while the rate constant for decomposi-
tion is 5.4×10–6 s–1 [14]. Thus, the likelihood of the radi- 
cal escaping from the micelle is only about 0.05. In our 
previous work [69], we observed that it happens because: 

– the micelle forms a secondary cell, within which the 
probability of the radical escaping is significantly lower;  

– the lower concentration of oxygen promotes chain ter-
mination via Reaction 5 (Fig. 2), which is thermodynami- 
cally more favorable than Reaction 6 (Fig. 2). 

Interestingly, the rate constant ki for the lipid-soluble  
AIBN depends on pH, even though it is within the micel- 
le. The publication in question provided no explanation 
for this observation, which means that inhibition me- 
thods for micellar solutions require further clarification.

Chain propagation. Measuring the rate constants 
for chain propagation under colloidal conditions is quite 
challenging. One of the few experimentally determined 
rate constants for the chain propagation of linoleates in 
bilayers was found to be several times lower than in true 
solutions: 16.6 and 70 L/(mol·s), respectively [70]. This 
result was attributed to the peroxyl radical being “some-
what expelled outward” [48]. In molecular dynamics 
simulations, the peroxyl radical is more favorably posi-
tioned within the lipid region while the hydroperoxide 
aligns with the aqueous phase [71].

For water-soluble initiators, the “loading” of the mi- 
celle is a factor that affects the rate of chain propaga- 
tion [72, 73]. At 2–20 nm, the oxidation rate exhibits a  
linear dependence on the number of fatty acid mole-
cules within the micelle. Such sizes allow for the contain- 
ment of a relatively small number of molecules (up to 
several hundred), which limits the oxidation rate. Con-
versely, oxidation in water/oil systems with a droplet 
size of hundreds of nanometers is much closer to ideal 
solutions [74]. Similar conclusions were reported in [75] 
concerning the oxidation of olive oil and fish oil emul-
sions in water with sizes ranging from 80 to 1300 nm. 
The lipid oxidation rate in emulsions actually decreased 
as the droplet size went up [76].

Figure 5 illustrates the mechanism of decomposition 
hydroperoxyls in micelles. When using water-soluble ini- 
tiators, some chains in micelles may be propagated by 
the hydroperoxyl radical (HO2

●) [77]. Its presence in the 
oxidation process of methyl linoleate and methyl lino-
lenate was detected using superoxide dismutase, which 
converts HO2

● into hydrogen peroxide [78]. For the mo- 
nounsaturated ester (methyl oleate), the authors obser- 
ved no superoxide dismutase inhibition, which means 
that oleate oxidation did not produce HO2

●. However, su-

peroxide dismutase inhibition confirms only the cases 
where HO2

● is both generated and propagates the chain. 
Remarkably, HO2

● was unable to propagate chains in sa- 
turated and monounsaturated fatty acids [38, 39]. Addi- 
tionally, HO2

● did not participate in chain propagation for 
linoleates where hydrogen was replaced with deuterium 
at the bis-allylic position [39].

A more accurate method for detecting HO2
● de-

scribed in [79] involved a combination of superoxide dis- 
mutase and nitroxide radicals. Nitroxide radicals ap-
peared in the presence of HO2

●, but the presence of su-
peroxide dismutase reduced the concentration of HO2

● 

and shortened the induction period. This method was 
found lacking because nitroxide radicals were weak an-
tioxidants, which resulted in a poorly defined induction 
period. Another confirmation of HO2

● formation was the 
decreased induction period of nitroxide radicals during 
the oxidation of methyl linoleate in Triton X100 micelles 
in heavy water [80]. Heavy water led to the replacement 
of HO2

● with DO2
●, which cannot regenerate nitroxide 

radicals [47, 81].
As for lipid-soluble initiators, the formation of HO2

● 

did not occur in Triton X100 micelles [69]. It happened 
because peroxyl radicals are more likely to be destroyed 
inside the micelle. However, the number of fatty acid 
molecules inside the micelle interior is limited. When 
initiated with water-soluble initiators, the chain length 
exceeded the number of molecules inside the micelle [79]. 
This phenomenon can partly be explained by the forma-
tion of HO2

●, but even with the introduction of superoxide  
dismutase, the chain length remained greater than the 
number of molecules inside the micelle [79]. Thus, some 
chains can be transferred through collisions between two 
micelles, one of which contains a radical [9, 73, 82].

Such chain propagation mechanisms as radical dif- 
fusion into the solution and co-oxidation with surfac-
tants [83] are virtually impossible. In the first case, the 
solubility of fatty acid radicals in aqueous media is 
minimal. In the second case, it primarily affects hydro-
philic regions that do not interact with the micelle inte- 
rior. However, some non-ionic surfactants, e.g., Triton 
X100, Tween 65, and Pluronic F68, could undergo oxi-
dation [83, 84]. Thus, we can only discuss parallel oxi-
dation of surfactants and fatty acids.

Fempton-like reaction Supramolecular catalyst

Figure 5 Mechanism of decomposition hydroperoxyls  
in micelles
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Chain termination in true solutions occurs via Reac- 
tions 4–6 (Fig. 2). At high oxygen concentrations, Reac-
tions 4 and 5 can be neglected since the concentration 
of alkyl radicals is extremely low. Since the oxygen con-
centration in an aqueous medium is almost an order of 
magnitude lower than in organic solvents, Reactions 4 
and 5 predominate during chain termination in the mi-
celle. Chain termination is most likely to occur inside 
the micelle because the concentration of radicals in the 
organic phase is much higher than in the aqueous phase.

No consensus has been reached so far on the type of 
chain termination in micellar solutions. AAPH demon-
strates both mixed and linear chain terminations. Linear 
termination might be related to the fact that only one 
initiator radical enters the micelle whereas quadratic ter-
mination requires two chains. In [85], linear termination 
was explained by the formation of the hydroperoxyl rad-
ical: upon exiting the micelle, it converts into a less reac-
tive superoxide anion radical:

                 O2
●– + H+ ↔ HO2

● (pKa = 4.8) 

However, these processes do not terminate the chain 
but rather slow it down and eventually lead to chain 
transfer, as evidenced by the higher oxidation rates ob-
served under nanoheterogenous conditions.

The decay of HO2
● in aqueous environments can oc-

cur through two reactions [86, 87]:

HO2
● + HO2

● → H2O2 + 1O2

k = 8.3×105 L/(mol·s)

HO2
● + O2

●– + H2O → H2O2 + O2 + OH– 
k = 9.7×107 L/(mol·s)

These reactions have high-rate constants, but un-
der neutral pH conditions, the concentration of HO2

● is 
low, and the chain termination is minimal. In organic 
solvents, the rate of chain termination depends on the 
formation of the HO2

●-solvent complex [45]. This con-
clusion for HO2

● + HO2
● was reported in studies that fea-

tured rate constants in various solvents.
Loshadkin et al. [84, 88–90] explained the gradual 

increase in the oxidation rate by “radical accumulation”. 
This effect is likely caused by the presence of antioxidant 
impurities, as evidenced by the increased reaction order 
with respect to the initiator during the reaction and the 
longer induction period with decreased initiation rates. 
Therefore, thoroughly purified reagents are crucial for 
more accurate kinetic models of lipid oxidation.

Studying chain termination with lipid-soluble initi-
ators is challenging because their concentration is diffi-
cult to vary: a lower initiator concentration decreases the 
already low oxidation rate while a higher concentration 
may complicate its solubility in micelles.

Inhibited oxidation. Oxidation is often an undesir-
able process. Equation (1) clearly demonstrates that the 
oxidation rate can be reduced by decreasing the chain 
propagation rate (Reaction 2, Fig. 2), by slowing down 

the initiation rates, or by hydroperoxide decomposition. 
The types of inhibitors for optimal lipid oxidation are 
listed below [91]:
– chain-breaking inhibitors that react with peroxyl radi-
cals, e.g., aromatic amines and phenols;

– chain-breaking inhibitors that react with alkyl radicals, 
e.g., nitroxyl radicals; and
– metal deactivators for variable valency metals.

For metal deactivators, the rate of oxidation initiated 
by variable valency metal ions depends on pH and the 
presence of chelating agents, such as EDTA [92]. Acidic  
pH is known to reduce the rate of oxidation initiated 
by iron ions. Such surfactants as Tween can also form 
chelate complexes. Such amino acids as L-lysine and L- 
asparagine develop complexes with iron ions [93], there-
by reducing the oxidation rate in meat products. So-
dium citrate additives also reduce oxidation rates [94]. 
Conversely, monovalent salts tend to increase the oxi-
dation rate, probably due to their impact on the surface 
of emulsion droplets. Phosphate groups [95], e.g., in so-
dium caseinate [96], reduce oxidation rates by forming 
complexes. Buffer solutions based on citrates and phos-
phates lower oxidation rates by stabilizing iron ions in 
the solution [97]. An innovative approach to creating 
new inhibitory materials involves the complexation of 
variable valency metal ions with poly(hydroxyethyl acry- 
late) [98]. This method provides coatings for poly(ethy- 
lene terephthalate) containers, which extends the shelf-
life of food products. 

Chain-breaking inhibitors that react with alkyl radi-
cals are generally less effective due to the relatively low 
concentration of alkyl radicals. The most common in-
hibitors are various nitroxyl radicals, such as TEMPO  
and its derivatives. However, they are primarily uti- 
lized as radical traps and spin labels in oxidation kinet-
ics (Fig. 6) [39, 79, 99–103]. In practice, the antioxidant 
action of nitroxyl radicals is not limited to reactions 
with alkyl radicals [104] because nitroxyl radicals exist 
as alkoxyamines and hydroxylamines in aqueous envi-
ronments [105, 106]. Hydroxylamines are particularly 
strong inhibitors. Nitroxyl radicals also react with HO2

●, 
and this reaction regenerates nitroxyl radicals, facilitat-
ing the formation of antioxidant systems. For instance, 
Amorati et al. [47, 107, 108] proposed an antioxidant sys- 
tem based on nitroxyl radicals and 1,4-cyclohexadiene 

Figure 6 Mechanism of nitroxyl radical-inhibited oxidation  
of methyl linoleate in micelles (Adapted from [99])
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and its derivatives, where HO2
● is produced upon oxida-

tion. Other potential substrates for similar systems in-
clude 1,2-disubstituted ethylenes and 1,4-disubstituted  
butadienes, which also produce HO2

● upon oxidation [42].  
Additionally, HO2

● can be generated in systems with oxy- 
gen peroxide [109]; however, its concentration in the  
lipid phase is usually minimal.

The most extensive group of oxidation inhibitors 
consists of those that react with peroxyl radicals. Vari- 
ous polyphenols and phenols (PhOH) are the most pop-
ular inhibitors in this category [46, 110]: vitamin E, 
epicatechins, Trolox, 2,6-di-tert-butyl-4-methylphenol 
(BHT), etc. [111–114]. Their mechanism of action in non- 
polar organic solutions is typically represented as a hy-
drogen atom transfer:

              PhOH + LO2
● → PhO● + LOOH

                       PhO● + LO2
● → NRP

Thus, phenols can terminate two oxidation chains. 
However, numerous side reactions may reduce their ef-
fectiveness e.g., autoxidation reactions, reactions be-
tween phenolic radicals, etc. In the case of hydrogen 
atom transfer, the key parameter is the bond dissociation 
energy of the O–H bond [115]. The lower the bond energy,  
the more active the inhibitor. At lower bond energies, 
autoxidation reactions become more favorable, which 
can lead to a pro-oxidant effect [116, 117].

                  PhOH + O2→ PhO● + HO2
●

In this case, autooxidation is accelerated due to the 
catalytic oxidation of phenols in the presence of iron 
ions [118, 119].

Assessing antioxidant activity by the bond dissociati- 
on energy can yield intriguing results: in [120] the authors  
demonstrated that the C–H bond energy in flavonoids 
was lower than the O–H bond energy in phenolic groups. 

In multiphase systems, the dependence of antioxidant 
activity on the structure and polarity of inhibitors differs 
somewhat from that in true solutions (Fig. 7). Among in-
hibitors of the same class, the most polar phenolic inhi- 
bitors exhibit the highest antioxidant activity in true 
solutions. In water/oil systems, less polar inhibitors are 
more effective [121]. This phenomenon is known as the 
polar paradox [122]: nonpolar antioxidants dissolve bet-
ter on the lipid surface where the primary oxidation pro-
cesses occur [123]. Clearly, hydrophobicity can be en-
hanced by increasing the number of hydrophobic groups 
in the inhibitor molecule. However, the antioxidant ac-
tivity of inhibitors gradually reaches a limit with the in-
creasing length of the alkyl tail, a phenomenon termed 
the cut-off effect [124–126]. 

Some researchers believe that concentration is also 
important [127, 128]. For instance, they compared the 
antioxidant activity of epigallocatechin gallate (EGCG) 
with its lipophilic ester derivative (tetrastearate) in oil. 
The ester was more effective at lower concentrations 
whereas epigallocatechin gallate proved more active at 

higher concentrations. At low concentrations, the effect 
of solubility in oil predominates over the interfacial phe-
nomena on antioxidant effectiveness. Thus, non-polar an- 
tioxidants with better fat solubility are more effective 
than their polar counterparts while the reverse is true 
at higher concentrations. As a result, the polar paradox 
theory is applicable only when the antioxidant concen-
tration exceeds a critical value to let the interfacial phe-
nomena dominate over solubility parameters.

A more complex approach to the effect of the inhibi- 
tor at the phase boundary is introduced in [129–131]. For 
instance, Bravo-Díaz et al. [132] developed a pseudo- 
phase model: they divided the entire solution into oil, in-
terfacial, and aqueous regions, with surfactants located  
at the boundary between the lipid and aqueous phases. 
Each region demonstrated distinct solvent properties and 
was considered a separate phase, or pseudo-phase. Rea- 
gents and other components distributed thermodynami-
cally in line with the Gibbs free energy of transfer. This 
effect means that the distribution of reagents is always 
described by partition constants, which remain constant 
throughout the reaction. Phenolic radicals and their con-
centration are detected with 4-hexadecylbenzenedia-
zonium, which reacts with phenolates to form colored 
compounds.

Such polar environments as water or alcohols have 
a different inhibition mechanism. Previously, polar sol-
vents were believed to reduce the rate of inhibition by 
forming associates with polar functional groups of in-
hibitors [133], which required the disruption of hydrogen 
bonds before the group could react with radicals. Nowa-
days, there are more complex mechanisms of inhibition 
in polar media. For example, in medium-polarity envi-
ronments, e.g., methanol, the preferred mechanism is a 
single electron transfer-proton transfer (SET-PT) [134]:

           PhOH + LO2
● → PhOH+● + LO2

–

           PhOH+● + LO2
–→ PhO● + LOOH

Figure 7 Interfacial phenomena as a possible action mechanism 
of polar paradox in oil-in-water emulsion and bulk oil
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Aqueous environments have a tendency to the me- 
chanism of sequential proton loss electron transfer 
(SPLET) [135–137]: 

                     PhOH → PhO– + H+ 
               PhO– + LO2

● → PhO● + LO2
– 

                     LO2
– + H+→ LOOH

Inhibitors can terminate chain reactions through all  
three mechanisms, with the sequential proton loss elec-
tron transfer predominantly occurring in the aqueous 
phase, single electron transfer-proton transfer at the in-
terface, and hydrogen atom  transfer  in the lipid phase. 
Thus, the effectiveness of antioxidants may vary de-
pending on their location within a multiphase system, 
with different mechanisms being more favorable in spe-
cific regions due to the local environment and solvent 
properties.

Evaluation of antioxidant activity. Antioxidant ac- 
tivity can be characterized by such parameters as the 
stoichiometric inhibition coefficient ( f ) and the chain 
termination rate constant (k7). The stoichiometric inhi-
bition coefficient essentially represents the number of 
broken chains on one inhibitor molecule. For phenols, 
the most common stoichiometric inhibition coefficient 
is around 2, but this value may decrease with an in-
crease in the probability of side reactions. Experimen-
tally, the stoichiometric inhibition coefficient f depends 
on the induction period (τind). These quantities correlate 
as in Eq. (4) [138, 139]:
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where [InH] is the concentration of the antioxidant, 
mol/L.

The induction period is usually determined by two 
methods. In line with the geometric method, a tangent is 
drawn from the section of the exit from the induction pe-
riod. In this case, the induction period is the intersection 
of the time axis and the tangent (Fig. 8) [49, 140]. The 
integral method means that the induction period is calcu-
lated as in Eq. (5) (Fig. 9):
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where R is the rate at time t, mol/(L·s); R0 is the rate of 
uninhibited oxidation, mol/(L·s). 

The chain breakage rate constant k7 is calculated  
using Eqs. (6) and (7):
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In the first case, the dependence of F1 on time is 
plotted for the section leaving the induction period.  
In Eq. (6), the derivative equals, 
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from which it is easy to calculate k7. In the second case, 
the oxidation rate is measured at different inhibitor con-
centrations, and then a graph of F2 is plotted against 
the antioxidant concentration: the resulting deriva-
tive reveals the value of k7. Initially developed for true 
solutions [141], these approaches are also applicable to 
colloidal solutions but with some reservations, e.g., the 
true chain transfer rate constant is unknown.

Measuring the oxidation rate. The oxidation kine- 
tics can be monitored either by the reaction reagents, 
e.g., oxygen consumption, or by the product accumula-
tion, e.g., hydroperoxides. The antioxidant concentration  
can be monitored even if oxidation is inhibited. The sim- 
plest analysis option is to control the oxygen concentra-
tion. One option is to measure the volume of absorbed 
oxygen [142, 143]. Another one is to determine the 
concentration of dissolved oxygen in the solution, e.g., 
with the help of the Clark electrode in aqueous solu- 
tions [144]. Photosensors offer a more universal op-
tion: they detect singlet oxygen fluorescence [145–148].  

Figure 9 Integral method of determining the induction period 
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In this case, however, the generation of singlet oxygen 
may lead to a slight increase in the oxidation rate.

Electrochemical approaches detect oxidation of vari- 
ous species and their oxidation rates. For examples, an 
amperometric test based on pseudo-titration approach 
could measure the antioxidant power of wine, orange 
juice [149], and complex samples [150], such as blood. 
Voltametric measurements can be applied in a similar 
way [151]. Other publications report calculating the elec-
trochemical reaction rates based on the Butler-Volmer 
equation [152, 153]. 

Recent studies that focus on hydrogen peroxide and 
hydroperoxide-ion monitor the intra- and extracellular 
concentration in biological processes by using interme-
tallic catalytic particles deposited in hydrogel [154] or 
by applying oxide particles [155] to screen-printed car-
bon electrode or glassy carbon electrode. The latter op-
tion involves electrocatalysis driven by equilibration of 
Fermi-levels with the surrounding solutions [156, 157]. 
Highly conductive materials and additives with high 
specific surface area improve the kinetics of hydroper- 
oxide oxidation and lower the limit of detection in elec-

trochemical methods. The list includes carbon nano-
tubes, graphene [158], or gold nanoparticles [159, 160].

Since hydroperoxides are subject to decomposition, 
their accumulation is difficult to monitor directly. Rus-
sian researchers prefer this method for determining hy-
droperoxides that consists of back titration of iodine re-
duced by hydroperoxide. More complex methods include 
spectral determination of iodine or iron ions, as well as 
chromatographic, infrared, and titrimetric determination 
of triphenylphosphine oxide (TPPO), formed from triph-
enylphosphine (TPP) [161–171]. However, these methods 
are not convenient for studying kinetics because they 
require additional sample processing and a large sample 
volume for analysis. 

Online methods based on high-power laser-irra- 
diation can detect peroxide concentration in the sam-
ple. For example, the rapidly developing technique of  
Raman spectroscopy was applied to oxidation of fat 
acids and oils, as well as to monitoring reactions in  
liposomes [172–176]. The fingerprint region (300– 
1900 cm–1) in Raman spectroscopy [177] is a powerful 
tool to detect structural changes in compounds, especially  

Table 1 Machine learning algorithms in lipid oxidation and stability studies

Prediction Algorithm Reference
Evaluate the usefulness of orange by-product 
flour in the stabilization of oil-in-water 
emulsions and compare it with purified citrus 
pectins. 
Optimize the formulation of emulsion stabilized 
with orange by-product flour and vegetable 
proteins, using artificial neural networks

Feed-Forward Backpropagation Network 
Input: orange by-product flour content (0–3.40%) and protein content 
(0–0.60%)
Output: emulsion profile (apparent viscosity; d10, d50, and d90 
percentiles; ξ-potential; flocculation; creaming index) 

[182]

Paired with ATR-FTIR spectroscopy, identify  
and classify pure njangsa seed oil, palm kernel 
oil, coconut oil, njangsa seed oil-palm kernel 
oil, and njangsa seed oil-coconut oil margarine

Support Vector Machines, Decision Tree, Light Gradient-Boosting 
Machine, K-Nearest Neighbors, Logistic Regression, Random Forest
Input: FTIR spectra.
Output: classification of oil.

[183]

Identify off-flavors and compounds of lipid 
oxidation in dairy powders 

Random Forest, Leave-One-Out Cross-Validation, Root Mean Square 
Error classification of regression 
Input: GC/MS data; sensory data
Output: Top peak identification, list of compounds

[184]

Define lipid peroxidation activity Quantitative Structure-Activity Relationship Models 
Input: Top relevant descriptors previously selected by forward 
stepwise method based on p-value criteria
Output: LP = lipid peroxidation activity/No LP = no lipid 
peroxidation activity

[185]

Define water and lipid content in emulsion Self-learning Monte Carlo with Deep Neural Networks 
Input: SWIR spectra
Output: Water and lipid content

[186]

Measure biorelevance gap in antioxidant assays Quantitative Structure–Activity Relationship, K-Nearest Neighbors, 
Support Vector Machine, Bayesian Probabilistic Learning, Random 
Forest 
Input: Factors governing antioxidant activity in vivo
Output: antioxidation activity of polyphenol

[187]

Detect lipid and protein oxidative damage  
in thawed pork

Convolutional Neural Network, Multi-Task Convolutional Neural 
Network
Input: Raw 1D vis-NIR spectral data at 480–1002 nm 
Output: Malondialdehyde and carbonyl content of samples

[188]

Predicts the antioxidant activity of polyphenols Neural differential equations 
Input: Concentration headspace hexanal (GC), polyphenols (HPLC)
Output: Induction period

[189, 190]
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in complex composition of many chemical compounds. 
In this regard, methods of artificial intelligence and 
chemo-informatics may be useful, too [178]. The tech-
nique of Surface Enhance Raman Spectroscopy (SERS) 
detects lower contents of chemicals with relatively high 
scattering intensity due to plasmonic resonance and 
hot-spots between those particles. It proved effective in 
detecting low concentrations of polyphenols, e.g., chlo-
rogenic acid, caffeic, and gallic acids [179–181]. In addi-
tion, SERS-substrates are reusable [176].

Perspectives of machine learning. Predicting lipid 
oxidation and stability in various systems is a complex 
process, particularly due to the diverse physicochemical 
conditions, input data, and algorithms required. Lipid 
oxidation depends on a number of factors, making it 
difficult to develop a single, universal algorithm capa-
ble of providing accurate predictions across all condi-
tions. Currently, machine learning techniques can pre-
dict certain aspects of these systems. For example, such 
machine learning algorithms as Feed-Forward Backpro- 
pagation Networks optimize emulsions stabilized with 
orange by-product flour (OBPF) and proteins. Support 
Vector Machines and other models analyze spectros- 
copy data to classify oils. Deep learning algorithms, 
such as Neural Differential Equations, perform well in 
predicting the induction period of polyphenols in bulk 
lipid oxidation (Table 1).

These models operate on different input data and use 
various algorithms, such as Random Forest and Convo-
lutional Neural Networks, to address specific challeng-
es, such as predicting lipid content or oxidative damage 
in meat. Due to the wide range of approaches, a single 
model may not be sufficient to accurately predict lipid 
oxidation and antioxidant activity in different systems. 
As a result, future advancements will likely require new 
algorithms or combinations of existing ones to improve 
predictive capabilities across diverse colloidal condi-
tions. An integrated approach is essential for advanc-
ing our understanding of lipid oxidation and stability in 
complex systems.

The prediction of oxidation rate and antioxidant ac-
tivity often depends on such factors as droplet size, dis-
tribution of components between phases, and concentra-
tion of components. Components can be split into phases 
to predict their concentrations using Random Forest and 
Feed-Forward Backpropagation Network [191]. Since 
chemical kinetics of oxidation and inhibited oxidation 
are described by equations, Deep Neural Networks and 
Neural Differential Equations methods are the most suc-
cessful methods [192, 193]. The effect of antioxidants 
on oxidation kinetics can be predicted using Quanti-
tative Structure-Activity Relationship models. Thus, a 
combination of these three methods (Random Forest/
Feed-Forward Backpropagation Network + Deep Neural 

Networks/Neural Differential Equations + Quantitative 
Structure-Activity Relationship) can give an excellent 
result in terms of predicting the oxidation rate and anti-
oxidant properties.

CONCLUSION
Even though the oxidation of fatty acids in colloid 

solutions occurs by a radical-chain mechanism, it still 
depends on the redistribution of components between 
phases, droplet sizes, oxygen concentration, type of sur-
factant, and pH. Each of these factors affects the oxida-
tion mechanism.

Unlike oxidation in true solutions, the hydroperoxyl 
radical is an important oxidation factor in colloidal sys-
tems. It participates in the stages of chain propagation 
and inhibitor regeneration, as well as slows down the 
chain termination. Apparently, the hydroperoxyl radi-
cal is formed from the peroxyl radical in the process of 
chain initiation. 

The role of oxygen concentration remains under-
studied. Oxidation in water/lipid colloidal solutions oc-
curs with a lack of oxygen, which increases the likeli-
hood of chain termination by the reaction of alkyl and 
peroxyl radicals. 

The study of oxidation kinetics in colloidal solutions 
requires some caution because unpurified commercial 
reagents may lead to incorrect conclusions about the oxi- 
dation mechanism.

Machine learning will soon be able to predict lipid 
oxidation rates and antioxidant activity of inhibitors in 
colloidal systems. Given that various physicochemical 
processes complicate the development of the model, a 
combination of algorithms may be an effective solution.

This review examined the kinetics and the main stages  
of oxidation and inhibition of fatty acids, as well as the 
main research methods in oxidation kinetics. A more de-
tailed study of the kinetics of fatty acid oxidation in col-
loidal solutions may predict and increase the shelf-life of 
various food products.
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