ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Major food-borne zoonotic bacterial pathogens of livestock origin: A review

Abstract
Animal food-borne microbes are pathogens that jeopardize food safety and cause illness in humans via natural infection or contamination. Most of those microbes are bacteria that have considerable impacts on public health. Their survival and pathogenicity are due to toxin production, biofilm development, spore formation, disinfection resistance, and other traits. However, detailed information about them is scattered across scientific literature.
We aimed to compile information about major zoonotic bacteria linked with human food of livestock origin and describe their typical features, transmission modes, detection, and preventative approaches. In particular, we addressed the following pathogens that cause food-borne disease worldwide: Campylobacter, Salmonella, Listeria, Staphylococcus, Brucella, Clostridium, Mycobacterium, Colibacilus, and some others.
Many of those bacteria have substantial reservoirs in food animals, and food products of animal origin are the primary vehicles of their transmission. Human beings become affected by food-borne zoonotic bacteria if they consume raw animal products or foods produced by using unstandardized slaughtering methods or unsanitary preparation and handling procedures. These zoonotic bacteria and their toxins can be detected in food by culturing, serological, and molecular diagnostic methods. They are effectively controlled and prevented by good hygiene, good management practices, cooking, and pasteurization protocols.
In addition, there is a need for a centralized surveillance and monitoring system, as well as higher awareness in society of the occurrence, prevention, and control of bacterial pathogens related to food animals.
Keywords
Bacteria, characteristics, control, food-borne disease, livestock, pathogens, prevention and transmissions
REFERENCES
  1. Phelps LN, Kaplan JO. Land use for animal production in global change studies: Defining and characterizing a framework. Global Change Biology. 2017;23(11):4457–4471. https://doi.org/10.1111/gcb.13732
  2. Balehegn M, Kebreab E, Tolera A, Hunt S, Erickson P, Crane TA, et al. Livestock sustainability research in Africa with a focus on the environment. Animal Frontiers. 2021;11(4):47–56. https://doi.org/10.1093/af/vfab034
  3. Rojas-Downing MM, Nejadhashemi AP, Harrigan T, Woznicki SA. Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management. 2017;16:145–163. https://doi.org/10.1016/j.crm.2017.02.001
  4. Moyo S, Swanepoel F, Stroebel A. The role of livestock in developing communities: Enhancing multifunctionality. UJ Press; 2010. 236 p.
  5. Eshetie T, Hussien K, Teshome T, Mekonnen A. Meat production, consumption and marketing tradeoffs and potentials in Ethiopia and its effect on GDP growth: A review. Journal of Nutritional Health and Food Engineering. 2018;8(3):228–233. https://doi.org/10.15406/jnhfe.2018.08.00274
  6. Hemalata VB, Virupakshaiah DBM. Isolation and identification of food borne pathogens from spoiled food samples. International Journal of Current Microbiology and Applied Sciences. 2016;5(6):1017–1025. https://doi.org/10.20546/ijcmas.2016.506.108
  7. Recht J, Schuenemann VJ, Sánchez-Villagra MR. Host diversity and origin of zoonoses: The ancient and the new. Animals. 2020;10(9). https://doi.org/10.3390/ani10091672
  8. Grujić S, Grujčić M. Factors affecting consumer preference for healthy diet and functional foods. Foods and Raw Materials. 2023;11(2):259–271. https://doi.org/10.21603/2308-4057-2023-2-576
  9. Abebe M, Hailelule A, Abrha B, Nigus A, Birhanu M, Adane H, et al. Antibiogram of Escherichia coli strains isolated from food of bovine origin in selected Woredas of Tigray, Ethiopia. Journal of Bacteriology Research. 2014;6(3):17–22.
  10. Haileselassie M, Taddele H, Adhana K, Kalayou S. Food safety knowledge and practices of abattoir and butchery shops and the microbial profile of meat in Mekelle City, Ethiopia. Asian Pacific Journal of Tropical Biomedicine. 2013;3(5):407–412. https://doi.org/10.1016/S2221-1691(13)60085-4
  11. Dhama K, Rajagunalan S, Chakraborty S, Verma AK, Kumar A, Tiwari R, et al. Food-borne pathogens of animal origin-diagnosis, prevention, control and their zoonotic significance: A review. Pakistan Journal of Biological Sciences. 2013;16(20):1076–1085. https://doi.org/10.3923/pjbs.2013.1076.1085
  12. Heredia N, García S. Animals as sources of food-borne pathogens: A review. Animal Nutrition. 2018;4(3):250–255. https://doi.org/10.1016/j.aninu.2018.04.006
  13. Zhao X, Lin C-W, Wang J, Oh DH. Advances in rapid detection methods for foodborne pathogens. Journal of Microbiology and Biotechnology. 2014;24(3):297–312. https://doi.org/10.4014/jmb.1310.10013
  14. Zelalem A, Sisay M, Vipham JL, Abegaz K, Kebede A, Terefe Y. The prevalence and antimicrobial resistance profiles of bacterial isolates from meat and meat products in Ethiopia: A systematic review and meta-analysis. International Journal of Food Contamination. 2019;6. https://doi.org/10.1186/s40550-019-0071-z
  15. Addis M, Sisay D. A review on major food borne bacterial illnesses. Journal of Tropical Diseases. 2015;3.
  16. Kebede T, Afera B, Taddele H, Bsrat A. Assessment of bacteriological quality of sold meat in the butcher shops of Adigrat, Tigray, Ethiopia. Applied Journal of Hygiene. 2014;3(3):38–44.
  17. Dadi L, Asrat D. Prevalence and antimicrobial susceptibility profiles of thermotolerant Campylobacter strains in retail raw meat products in Ethiopia. Ethiopian Journal of Health Development. 2008;22(2):195–200. https://doi.org/10.4314/ejhd.v22i2.10072
  18. Wieczorek K, Wołkowicz T, Osek J. Antimicrobial resistance and virulence-associated traits of Campylobacter jejuni isolated from poultry food chain and humans with diarrhea. Frontiers in Microbiology. 2018;9. https://doi.org/10.3389/fmicb.2018.01508
  19. Jacobs-Reitsma WF, Newell DG, Wagenaar JA. Campylobacter jejuni and Campylobacter coli. In: Manual of diagnostic tests and vaccines for terrestrial animals. Paris: Office International des Epizooties; 2008. pp. 1185–1191.
  20. Young KT, Davis LM, DiRita VJ. Campylobacter jejuni: Molecular biology and pathogenesis. Nature Reviews Microbiology. 2007;5:665–679. https://doi.org/10.1038/nrmicro1718
  21. Andrzejewska M, Szczepańska B, Śpica D, Klawe JJ. Prevalence, virulence, and antimicrobial resistance of Campylobacter spp. in raw milk, beef, and pork meat in Northern Poland. Foods. 2019;8(9). https://doi.org/10.3390/foods8090420
  22. Fernandes AM, Balasegaram S, Willis C, Wimalarathna HML, Maiden MC, McCarthy ND. Partial failure of milk pasteurization as a risk for the transmission of Campylobacter from cattle to humans. Clinical Infectious Diseases. 2015;61(6):903–909. https://doi.org/10.1093/cid/civ431
  23. Taylor EV, Herman KM, Ailes EC, Fitzgerald C, Yoder JS, Mahon BE, et al. Common source outbreaks of Campylobacter infection in the USA, 1997–2008. Epidemiology and Infection. 2013;141(5):987–996. https://doi.org/10.1017/S0950268812001744
  24. Jay-Russell MT, Mandrell RE, Yuan J, Bates A, Manalac R, Mohle-Boetani J, et al. Using major outer membrane protein typing as an epidemiological tool to investigate outbreaks caused by milk-borne Campylobacter jejuni isolates in California. Journal of Clinical Microbiology. 2013;51(1):195–201. https://doi.org/10.1128/JCM.01845-12
  25. Progress on sanitation and drinking water: 2015 update and MDG assessment. UNICEF and World Health Organization; 2015. 90 p.
  26. Humphrey S, Chaloner G, Kemmett K, Davidson N, Williams N, Kipar A, et al. Campylobacter jejuni is not merely a commensal in commercial broiler chickens and affects bird welfare. mBio. 2014;5(4). https://doi.org/10.1128/mBio.01364-14
  27. Lake RJ, Horn BJ, Dunn AH, Parris R, Green FT, McNickle DC. Cost-effectiveness of interventions to control Campylobacter in the New Zealand poultry meat food supply. Journal of Food Protection. 2013;76(7):1161–1167. https://doi.org/10.4315/0362-028X.JFP-12-481
  28. Chen J, Sun X-T, Zeng Z, Yu Y-Y. Campylobacter enteritis in adult patients with acute diarrhea from 2005 to 2009 in Beijing, China. Chinese Medical Journal. 2011;124(10):1508–1512. https://doi.org/10.3760/cma.j.issn.0366-6999.2011.10.013
  29. Mogasale V, Maskery B, Ochiai RL, Lee JS, Mogasale VV, Ramani E, et al. Burden of typhoid fever in low-income and middle-income countries: A systematic, literature-based update with risk-factor adjustment. The Lancet Global Health. 2014;2(10):e570–e580. https://doi.org/10.1016/S2214-109X(14)70301-8
  30. Evdokimova SA, Karetkin BA, Zhurikov MO, Guseva EV, Khabibulina NV, Shakir IV, et al. Antagonistic activity of synbiotics: Response surface modeling of various factors. Foods and Raw Materials. 2022;10(2):365–376. https://doi.org/10.21603/2308-4057-2022-2-543
  31. Gal-Mor O, Boyle EC, Grassl GA. Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Frontiers in Microbiology. 2014;5. https://doi.org/10.3389/fmicb.2014.00391
  32. Johnson TJ, Wannemuehler YM, Johnson SJ, Logue CM, White DG, Doetkott C, et al. Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Applied and Environmental Microbiology. 2007;73(6):1976–1983. https://doi.org/10.1128/AEM.02171-06
  33. Kemal J. A review on the public health importance of bovine salmonellosis. Journal of Veterinary Science and Technology. 2014;5. https://doi.org/10.4172/2157-7579.1000175
  34. Radostits OM, Gay CC, Hinchcliff KW, Constable PD. Veterinary medicine: A textbook of the diseases of cattle, horses, sheep, pigs and goats. Saunders Ltd.; 2007. 2180 p.
  35. Kemal J, Sibhat B, Menkir S, Terefe Y, Muktar Y. Antimicrobial resistance patterns of Salmonella in Ethiopia: A review. African Journal of Microbiology Research. 2015;9(46):2249–2256. https://doi.org/10.5897/AJMR2015.7763
  36. Girma G. Prevalence, antibiogram and growth potential of Salmonella and Shigella in Ethiopia: Implications for public health: A review. Research Journal of Microbiology. 2015;10(7):288–307. https://doi.org/10.3923/jm.2015.288.307
  37. Jones BD. Salmonella invasion gene regulation: A story of environmental awareness. Journal of Microbiology. 2005;43:110–117.
  38. Technical specifications on the harmonised monitoring and reporting of antimicrobial resistance in Salmonella, Campylobacter and indicator Escherichia coli and Enterococcus spp. bacteria transmitted through food. EFSA Journal. 2012;10(6). https://doi.org/10.2903/j.efsa.2012.2742
  39. Lee K-M, Runyon M, Herrman TJ, Phillips R, Hsieh J. Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety. Food control. 2015;47:264–276. https://doi.org/10.1016/j.foodcont.2014.07.011
  40. Wang J, Li Y, Chen J, Hua D, Li Y, Deng H, et al. Rapid detection of food-borne Salmonella contamination using IMBs-qPCR method based on pagC gene. Brazilian Journal of Microbiology. 2018;49(2):320–328. https://doi.org/10.1016/j.bjm.2017.09.001
  41. Pal M, Awel H. Public health significance of Listeria monocytogenes in milk and milk products: An overview. Journal of Veterinary Public Health. 2014;12(1):1–5.
  42. Lee SHI, Cappato LP, Guimarães JT, Balthazar CF, Rocha RS, Franco LT, et al. Listeria monocytogenes in milk: Occurrence and recent advances in methods for inactivation. Beverages. 2019;5(1). https://doi.org/10.3390/beverages5010014
  43. Shamloo E, Abdimoghadam Z, Nazari K, Hosseini SM, Hosseini H, Alebouyeh M. Long term survival of Listeria monocytogenes in stress conditions: High pH and salt concentrations. Journal of Research in Medical and Dental Science. 2018;6(6):96–100.
  44. Colagiorgi A, Bruini I, Di Ciccio PA, Zanardi E, Ghidini S, Ianieri A. Listeria monocytogenes biofilms in the wonderland of food industry. Pathogens. 2017;6(3). https://doi.org/10.3390/pathogens6030041
  45. Al-mashhadany DA, Ba-Salamah HA, Shater A-R, Al Sanabani AS, Abd Al Galil FM. Prevalence of Listeria monocytogenes in red meat in Dhamar Governorate/Yemen. Prevalence. 2016;2(12):73–78.
  46. Şanlıbaba P, Tezel BU. Prevalence and characterization of Listeria species from raw milk and dairy products from Çanakkale province. Turkish Journal of Agriculture – Food Science and Technology. 2018;6(1):61–64. https://doi.org/10.24925/turjaf.v6i1.61-64.1641
  47. Girma Y, Abebe B. Isolation, identification and antimicrobial susceptibility of Listeria species from raw bovine milk in Debre-Birhan Town, Ethiopia. Journal of Zoonotic Diseases and Public Health. 2018;2(1).
  48. Analysis of the baseline survey on the prevalence of Listeria monocytogenes in certain ready‐to‐eat foods in the EU, 2010–2011 Part A: Listeria monocytogenes prevalence estimates. EFSA Journal. 2013;11(6). https://doi.org/10.2903/j.efsa.2013.3241
  49. Bolocan AS, Oniciuc EA, Alvarez-Ordonez A, Wagner M, Rychli K, Jordan K, et al. Putative cross-contamination routes of Listeria monocytogenes in a meat processing facility in Romania. Journal of Food Protection. 2015;78(9):1664–1674. https://doi.org/10.4315/0362-028X.JFP-14-539
  50. Law JW-F, Ab Mutalib N-S, Chan K-G, Lee L-H. An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food. Frontiers in Microbiology. 2015;6. https://doi.org/10.3389/fmicb.2015.01227
  51. Rajkovic A, Smigic N, Devlieghere F. Contemporary strategies in combating microbial contamination in food chain. International Journal of Food Microbiology. 2010;141:S29–S42. https://doi.org/10.1016/j.ijfoodmicro.2009.12.019
  52. Dhama K, Karthik K, Tiwari R, Shabbir MZ, Barbuddhe S, Malik SVS, et al. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: A comprehensive review. Veterinary Quarterly. 2015;35(4):211–235. https://doi.org/10.1080/01652176.2015.1063023
  53. Wang W, Baloch Z, Jiang T, Zhang C, Peng Z, Li F, et al. Enterotoxigenicity and antimicrobial resistance of Staphylococcus aureus isolated from retail food in China. Frontiers in Microbiology. 2017;8. https://doi.org/10.3389/fmicb.2017.02256
  54. Argaw S, Addis M. A review on staphylococcal food poisoning. Food Science and Quality Management. 2015;40:59–72.
  55. Chaibenjawong P, Foster SJ. Desiccation tolerance in Staphylococcus aureus. Archives of Microbiology. 2011;193:125–135. https://doi.org/10.1007/s00203-010-0653-x
  56. Abebe E, Gugsa G, Ahmed M. Review on major food-borne zoonotic bacterial pathogens. Journal of Tropical Medicine. 2020;2020. https://doi.org/10.1155/2020/4674235
  57. Smith TC, Male MJ, Harper AL, Kroeger JS, Tinkler GP, Moritz ED, et al. Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is present in midwestern US swine and swine workers. PLoS ONE. 2009;4(1). https://doi.org/10.1371/journal.pone.0004258
  58. do Carmo LS, Dias RS, Linardi VR, de Sena MJ, dos Santos DA, de Faria ME, et al. Food poisoning due to enterotoxigenic strains of Staphylococcus present in Minas cheese and raw milk in Brazil. Food Microbiology. 2002;19(1):9–14. https://doi.org/10.1006/fmic.2001.0444
  59. James SJ, Evans J, James C. A review of the performance of domestic refrigerators. Journal of Food Engineering. 2008;87(1):2–10. https://doi.org/10.1016/j.jfoodeng.2007.03.032
  60. Assefa A, Bihon A. A systematic review and meta-analysis of prevalence of Escherichia coli in foods of animal origin in Ethiopia. Heliyon. 2018;4(8). https://doi.org/10.1016/j.heliyon.2018.e00716
  61. Bekele T, Zewde G, Tefera G, Feleke A, Zerom K. Escherichia coli O157: H7 in raw meat in Addis Ababa, Ethiopia: Prevalence at an abattoir and retailers and antimicrobial susceptibility. International Journal of Food Contamination. 2014;1. https://doi.org/10.1186/s40550-014-0004-9
  62. Geresu MA, Regassa S. Escherichia coli O157: H7 from food of animal origin in Arsi: Occurrence at catering establishments and antimicrobial susceptibility profile. The Scientific World Journal. 2021;2021. https://doi.org/10.1155/2021/6631860
  63. Ahmida MR. Molecular identification of certain virulence genes of some food poisoning bacteria contaminating raw milk. Damanhour Journal of Veterinary Sciences. 2020;4(2):20–24.
  64. Haile AF, Kebede D, Wubshet AK. Prevalence and antibiogram of Escherichia coli O157 isolated from bovine in Jimma, Ethiopia: Abattoirbased survey. Ethiopian Veterinary Journal. 2017;21(2):109–120. https://doi.org/10.4314/evj.v21i2.8
  65. Messele YE. Characterization of drug resistance patterns of E. coli isolated from milk collected from small scale dairy farms reared in Holeta and Burayu and meat from Addis Ababa abattoirs enterprise and Alema farm slaughter slab. Doctoral dissertation. Addis Ababa University; 2016. 68 p.
  66. Abreham S, Teklu A, Cox E, Sisay Tessema T. Escherichia coli O157:H7: Distribution, molecular characterization, antimicrobial resistance patterns and source of contamination of sheep and goat carcasses at an export abattoir, Mojdo, Ethiopia. BMC microbiology. 2019;19. https://orcid.org/0000-0002-4103-5029
  67. Lu Z, Breidt F. Escherichia coli O157:H7 bacteriophage Φ241 isolated from an industrial cucumber fermentation at high acidity and salinity. Frontiers in Microbiology. 2015;6. https://doi.org/10.3389/fmicb.2015.00067
  68. Fusco V, Chieffi D, Fanelli F, Logrieco AF, Cho G-S, Kabisch J, et al. Microbial quality and safety of milk and milk products in the 21st century. Comprehensive Reviews in Food Science and Food Safety. 2020;19(4):2013–2049. https://doi.org/10.1111/1541-4337.12568
  69. Farahmandfar M, Moori-Bakhtiari N, Gooraninezhad S, Zarei M. Comparison of two methods for detection of E. coli O157H7 in unpasteurized milk. Iranian Journal of Microbiology. 2016;8(5):282–287.
  70. Saeedi P, Yazdanparast M, Behzadi E, Salmanian AH, Mousavi SL, Nazarian S, et al. A review on strategies for decreasing E. coli O157:H7 risk in animals. Microbial Pathogenesis. 2017;103:186–195. https://doi.org/10.1016/j.micpath.2017.01.001
  71. Mesele F, Abunna F. Escherichia coli O157:H7 in foods of animal origin and its food safety implications: Review. Advances in Biological Research. 2019;13(4):134–145.
  72. Pennington H. Escherichia coli O157. The Lancet. 2010;376(9750):1428–1435. https://doi.org/10.1016/S0140-6736(10)60963-4
  73. Godfroid J, Scholz HC, Barbier T, Nicolas C, Wattiau P, Fretin D, et al. Brucellosis at the animal/ecosystem/human interface at the beginning of the 21st century. Preventive Veterinary Medicine. 2011;102(2):118–131. https://doi.org/10.1016/j.prevetmed.2011.04.007
  74. Ray K, Marteyn B, Sansonetti PJ, Tang CM. Life on the inside: The intracellular lifestyle of cytosolic bacteria. Nature Reviews Microbiology. 2009;7:333–340. https://doi.org/10.1038/nrmicro2112
  75. Tulu D, Deresa B, Begna F, Gojam A. Review of common causes of abortion in dairy cattle in Ethiopia. Journal of Veterinary Medicine and Animal Health. 2018;10(1):1–3. https://doi.org/10.5897/JVMAH2017.0639
  76. Fugier E, Pappas G, Gorvel J-P. Virulence factors in brucellosis: implications for aetiopathogenesis and treatment. Expert Reviews in Molecular Medicine. 2007;9(35):1–10. https://doi.org/10.1017/S1462399407000543
  77. Etter RP, Drew ML. Brucellosis in elk of eastern Idaho. Journal of Wildlife Diseases. 2006;42(2):271–278. https://doi.org/10.7589/0090-3558-42.2.271
  78. O'Grady J, Ruttledge M, Sedano-Balbas S, Smith TJ, Barry T, Maher M. Rapid detection of Listeria monocytogenes in food using culture enrichment combined with real-time PCR. Food Microbiology. 2009;26(1):4–7. https://doi.org/10.1016/j.fm.2008.08.009
  79. Ledwaba MB, Ndumnego OC, Matle I, Gelaw AK, van Heerden H. Investigating selective media for optimal isolation of Brucella spp. in South Africa. Onderstepoort Journal of Veterinary Research. 2020;87(1). https://doi.org/10.4102/ojvr.v87i1.1792
  80. Acharya KP, Kaphle K, Shrestha K, Garin Bastuji B, Smits HL. RETRACTED: Review of brucellosis in Nepal. International Journal of Veterinary Science and Medicine. 2016;4(2):54–62. https://doi.org/10.1016/j.ijvsm.2016.10.009
  81. Kamaloddini MH, Kheradmand HR. A foodborne botulism occurrence in Mashhad: Clostridium botulinum in local cheese. Journal of Emergency Practice and Trauma. 2021;7(1):66–68. https://doi.org/10.34172/jept.2020.01
  82. Sobel J, Tucker N, Sulka A, McLaughlin J, Maslanka S. Foodborne botulism in the United States, 1990–2000. Emerging Infectious Diseases. 2004;10(9)1606–1611. https://doi.org/10.3201/eid1009.030745
  83. Chaidoutis E, Keramydas D, Papalexis P, Migdanis A, Migdanis I, Lazaris AC, et al. Foodborne botulism: A brief review of cases transmitted by cheese products (Review). Biomedical Reports. 2022;16(5). https://doi.org/10.3892/br.2022.1524
  84. Abe Y, Negasawa T, Monma C, Oka A. Infantile botulism caused by Clostridium butyricum type E toxin. Pediatric Neurology. 2008;38(1):55–57. https://doi.org/10.1016/j.pediatrneurol.2007.08.013
  85. Rasetti-Escargueil C, Lemichez E, Popoff MR. Public health risk associated with botulism as foodborne zoonoses. Toxins. 2020;12(1). https://doi.org/10.3390/toxins12010017
  86. Mazuet C, da Silva NJ, Legeay C, Sautereau J, Popoff RM. Human botulism in France, 2013–2016. Bulletin Epidémiologique Hebdomadaire. 2018;3:46–54. (In French).
  87. Dąbrowski W, Mędrala D. Bacterial toxins. In: Dabrowski WM, Sikorski ZE, editors. Toxins in food. Boca Raton: CRC Press; 2004. https://doi.org/10.1201/9780203502358
  88. van Baar BLM, Hulst AG, de Jong AL, Wils ERJ. Characterisation of botulinum toxins type C, D, E, and F by matrix-assisted laser desorption ionisation and electrospray mass spectrometry. Journal of Chromatography A. 2004;1035(1):97–114.
  89. Madsen JM. Bio warfare and terrorism: toxins and other mid-spectrum agents. Army medical research inst of chemical defense aberdeen proving ground; 2005. 8 p.
  90. Grass JE, Gould LH, Mahon BE. Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998–2010. Foodborne Pathogens and Disease. 2013;10(2):131–136. https://doi.org/10.1089/fpd.2012.1316
  91. Gui L, Subramony C, Fratkin J, Hughson MD. Fatal enteritis necroticans (pigbel) in a diabetic adult. Modern Pathology. 2002;15(1):66–70. https://doi.org/10.1038/modpathol.3880491
  92. Johansson A, Engström BE, Frey J, Johansson K-E, Båverud V. Survival of Clostridium perfringens during simulated transport and stability of some plasmid-borne toxin genes under aerobic conditions. Acta Veterinaria Scandinavica. 2005;46. https://doi.org/10.1186/1751-0147-46-241
  93. Wang G, Paredes‐Sabja D, Sarker MR, Green C, Setlow P, Li Y-Q. Effects of wet heat treatment on the germination of individual spores of Clostridium perfringens. Journal of Applied Microbiology. 2012;113(4):824–836. https://doi.org/10.1111/j.1365-2672.2012.05387.x
  94. Jay JM, Loessner MJ, Golden DA. Modern food microbiology. New York: Springer; 2005. 790 p. https://doi.org/10.1007/b100840
  95. Birhanu T, Mezgebu E, Ejeta E, Gizachew A, Nekemte E. Review on diagnostic techniques of bovine tuberculosis in Ethiopia. Report and Opinion. 2015;7(1):7–14.
  96. Verma AK, Tiwari R, Chakraborty S, Neha, Saminathan M, Dhama K, et al. Insights into bovine tuberculosis (bTB), various approaches for its diagnosis, control and its public health concerns: An update. Asian Journal of Animal and Veterinary Advances. 2014;9(6):323–344. https://doi.org/10.3923/ajava.2014.323.344
  97. Lema AG, Dame IE. Bovine tuberculosis remains a major public health concern: A review. Austin Journal of Veterinary Science and Animal Husbandry. 2022;9(1).
  98. Firdessa R, Tschopp R, Wubete A, Sombo M, Hailu E, Erenso G, et al. High prevalence of bovine tuberculosis in dairy cattle in central Ethiopia: Implications for the dairy industry and public health. PLoS ONE. 2012;7(12). https://doi.org/10.1371/journal.pone.0052851
  99. Cadmus SIB, Yakubu MK, Magaji AA, Jenkins AO, van Soolingen D. Mycobacterium bovis, but also M. africanum present in raw milk of pastoral cattle in north-central Nigeria. Tropical Animal Health and Production. 2010;42:1047–1048. https://doi.org/10.1007/s11250-010-9533-2
  100. Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C. Variable human minisatellite‐like regions in the Mycobacterium tuberculosis genome. Molecular Microbiology. 2000;36(3):762–771. https://doi.org/10.1046/j.1365-2958.2000.01905.x
  101. Cousins DV. Mycobacterium bovis infection and control in domestic livestock. Revue Scientifique et Technique. 2001;20(1):71–85. https://doi.org/10.20506/rst.20.1.1263
  102. Anaelom NJ, Ikechukwu OJ, Sunday EW, Nnaemeka UC. Zoonotic tuberculosis: A review of epidemiology, clinical presentation, prevention and control. Journal of Public Health and Epidemiology. 2010;2(6):118–124.
How to quote?
Zenu F, Bekele T. Major food-borne zoonotic bacterial pathogens of livestock origin: A review. Foods and Raw Materials. 2024;12(1):179–193. https://doi.org/10.21603/2308-4057-2024-1-595 
About journal

Download
Contents
Abstract
Keywords
References