Abstract
Introduction. Mercury and its compounds are among the most dangerous toxic substances, which makes mercury pollution one of the most urgent environmental issues. The present research objective was to study the accumulation of mercury and its impact on the terrestrial ecosystems in the area of the Beloosipovo mercury deposit (Kemerovo Region, West Siberia, Russia).Study objects and methods. The study used standard methods to test soil, herbs, herpetobiont insects, and small mammals. The sampling was conducted at 13 points in the cardinal directions at 0.5, 1.5, and 3 km from the pollution source. The method of atomic absorption was employed to measure the concentration of mercury in the samples prepared by the wet mineralization method.
Results and discussion. The main components of terrestrial ecosystems revealed no excessive concentration of mercury in the soil. However, the water samples from the Belaya Osipova river demonstrated an excess in the maximum permissible concentration of mercury from 5 to 20% (0.00056–0.00074 mg/L). Further up the food chains, the concentration of mercury in organisms decreased by 1–2 orders of magnitude, depending on the sampling point. The study also revealed Siberian trout lily (Erythronium sibiricum (Fisch. et C. A. Mey) Kryl.), which is protected at the federal and regional levels, as well as several nemoral tertiary relics.
Conclusion. The decreasing concentration of mercury in the food chains means the ecosystem is under no severe negative impact.
Keywords
Ecology, mercury, mercury-containing compounds, terrestrial ecosystems, food chainsFUNDING
The research was conducted on the premises of the Research Equipment Sharing Center of Kemerovo State University, agreement No. 075-12021-694 dated August 5, 2021, between the Ministry of Science and Higher Education of the Russian Federation (Minobrnauka) and Kemerovo State University (KemSU) (contract identifier RF----2296.61321X0032).REFERENCES
- Selin H, Keane SE, Wang S, Selin NE, Davis K, Bally D. Linking science and policy to support the implementation of the Minamata Convention on Mercury. Ambio. 2018;47(2):198–215. https://doi.org/10.1007/s13280-017-1003-x.
- Zhou J, Du B, Shang L, Wang Z, Cui H, Fan X, et al. Mercury fluxes, budgets, and pools in forest ecosystems of China: A review. Critical Reviews in Environmental Science and Technology. 2020;50(14):1411–1450. https://doi.org/10.1080/10643389.2019.1661176.
- Karimi E, Yari M, Ghaneialvar H, Kazemi HR, Asadzadeh R, Aidy A, et al. Effects of dust phenomenon on heavy metals in raw milk in western Iran. Foods and Raw Materials. 2020;8(2):241–249. http://doi.org/10.21603/2308-4057-2020-2-241-249.
- Zhu W, Lin C-J, Wang X, Sommar J, Fu X, Feng X. Global observations and modeling of atmosphere-surface exchange of elemental mercury: A critical review. Atmospheric Chemistry and Physics. 2016;16(7):4451–4480. https://doi.org/10.5194/acp-16-4451-2016.
- Gustin MS, Ericksen JA, Schorran DE, Johnson DW, Lindberg SE, Coleman JS. Application of controlled mesocosms for understanding mercury air-soil-plant exchange. Environmental Science and Technology. 2004;38(22):6044–6050. https://doi.org/10.1021/es0487933.
- Fantozzi L, Ferrara R, Dini F, Tamburello L, Pirrone N, Sprovieri F. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy. Environmental Research. 2013;125:69–74. https://doi.org/10.1016/j.envres.2013.02.004.
- Mazur M, Mitchell CPJ, Eckley CS, Eggert SL, Kolka RK, Sebestyen SD, et al. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment. Science of the Total Environment. 2014;496:678–687. https://doi.org/10.1016/j.scitotenv.2014.06.058.
- Leonard TL, Taylor GE, Gustin MS, Fernandez GCJ. Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere. Environmental Toxicology and Chemistry. 1998;17(10):2063–2071. https://doi.org/10.1002/etc.5620171024.
- Asati A, Pichhode M, Nikhil K. Effect of heavy metals on plants: An overview. International Journal of Application or Innovation in Engineering and Management. 2016;5(3):56–66.
- Jameer Ahammad S, Sumithra S, Senthilkumar P. Mercury uptake and translocation by indigenous plants. Rasayan Journal of Chemistry. 2018;11(1):1–12. https://doi.org/10.7324/RJC.2018.1111726.
- Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters. 2010;8(3):199–216. https://doi.org/10.1007/s10311-010-0297-8.
- Cargnelutti D, Tabaldi LA, Spanevello RM, de Oliveira Jucoski G, Battisti V, Redin M, et al. Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere. 2006;65(6):999–1006. https://doi.org/10.1016/j.chemosphere.2006.03.037.
- Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Enamorado-Montes G, Díez S. Mercury uptake and effects on growth in Jatropha curcas. Journal of Environmental Sciences. 2016;48:120–125. https://doi.org/10.1016/j.jes.2015.10.036.
- Teixeira DC, Lacerda LD, Silva-Filho EV. Foliar mercury content from tropical trees and its correlation with physiological parameters in situ. Environmental Pollution. 2018;242:1050–1057. https://doi.org/10.1016/j.envpol.2018.07.120.
- Fuentes-Gandara F, Herrera-Herrera C, Pinedo-Hernández J, Marrugo-Negrete J, Díez S. Assessment of human health risk associated with methylmercury in the imported fish marketed in the Caribbean. Environmental Research. 2018;165:324-329. https://doi.org/10.1016/j.envres.2018.05.001.
- Zhou J, Obrist D, Dastoor A, Jiskra M, Ryjkov A. Vegetation uptake of mercury and impacts on global cycling. Nature Reviews Earth and Environment.2021;2(4):269–284. https://doi.org/10.1038/s43017-021-00146-y.
- Obrist D, Agnan Y, Jiskra M, Olson CL, Colegrove DP, Hueber J, et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature. 2017;547(7662):201–204. https://doi.org/10.1038/nature22997.
- Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio. 2018;47(2):116–140. https://doi.org/10.1007/s13280-017-1004-9.
- Ranieri E, Moustakas K, Barbafieri M, Ranieri AC, Herrera-Melián JA, Petrella A, et al. Phytoextraction technologies for mercury- and chromium-contaminated soil: a review. Journal of Chemical Technology and Biotechnology. 2020;95(2):317–327. https://doi.org/10.1002/jctb.6008.
- Jiskra M, E. Sonke J, Agnan Y, Helmig D, Obrist D. Insights from mercury stable isotopes on terrestrial–atmosphere exchange of Hg(0) in the Arctic tundra. Biogeosciences. 2019;16(20):4051–4064. https://doi.org/10.5194/bg-16-4051-2019.
- Greger M, Wang Y, Neuschütz C. Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. Environmental Pollution. 2005;134(2):201–208. https://doi.org/10.1016/j.envpol.2004.08.007.
- Juillerat JI, Ross DS, Bank MS. Mercury in litterfall and upper soil horizons in forested ecosystems in Vermont, USA. Environmental Toxicology and Chemistry. 2012;31(8):1720–1729. https://doi.org/10.1002/etc.1896.
- Komov VT, Gremyachikh VA, Udodenko YuG, Shchedrova YeV, Yelizarov MYe. Mercury in abiotic and biotic components of aquatic and terrestrial ecosystems in the urban settlement on the shore of the Rybinsk Reservoir. Transactions of Papanin Institute for Biology of Inland Waters RAS. 2017;77(80):34–56. (In Russ.). https://doi.org/10.24411/0320-3557-2017-10003.
- Gremyachikh VA, Lozhkina RA, Komov VT. Spatial-temporal variability of mercury content in the river perch Perca fluviatilis Linnaeus, 1758 (Perciformes: Percidae) of the Rybinsk Reservoir at the turn of the XX–XXI centuries. Ecosystem Transformation. 2019;2(2):85–95. (In Russ.). https://doi.org/10.23859/estr-180816.
- Gorbunov AV, Lyapunov SM, Okina OI, Sheshukov VS. Bioaccumulation of mercury in tissues of freshwater fish. Human Ecology. 2018;(11):23–31. (In Russ.). https://doi.org/10.33396/1728-0869-2018-11-26-31.
- Komov VT, Ivanova ES, Gremyachikh VA, Lapkina LN, Kozlova LV, Zheletok EN, et al. The mercury content in the organism of amphibians and leeches from waterbodies of Vologda and Yaroslavl oblasts and experimental verification of its biological consequences. Transactions of Papanin Institute for Biology of Inland Waters RAS. 2017;77(80):57–76. (In Russ.). https://doi.org/10.24411/0320-3557-2017-10004.
- Golovanova IL, Filippov AA, Komov VT, Urvantseva GA, Evdokimov EG. Effect of mercury accumulation on the activity of glycosidase and their sensitivity to heavy metals in toad tadpoles. Transactions of Papanin Institute for Biology of Inland Waters RAS. 2015;72(75):60–65. (In Russ.). https://doi.org/10.24411/0320-3557-2015-10012.
- Ehlektronnyy katalog geologicheskikh dokumentov [Electronic catalog of geological documents] [Internet]. [cited 2018 Jan 18]. Available from: https://rfgf.ru/catalog/index.php.
- Doklad o sostoyanii i okhrane okruzhayushchey sredy Kemerovskoy oblasti v 2018 godu [Report on the state and protection of the environment in the Kemerovo region in 2018] [Internet]. [cited 2018 Jan 18]. Available from: https://www.ecoindustry.ru/gosdoklad/view/523.html.