ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Optimization of canthaxanthin extraction from fermented biomass of Paracoccus carotinifacuens VTP20181 bacteria strain isolated in Vietnam

Abstract
Introduction. The bacterium strain Paracoccus carotinifaciens VTP20181 isolated in Vietnam produces canthaxanthin, a carotenoid widely used in the food and pharmaceutical industries. The aim of this work was to determine optimal parameters for canthaxanthin extraction from fermented biomass of P. carotinifaciens VTP20181.
Study objects and methods. First, a series of single factor investigations were carried out in regard to maximal carotenoid content in the biomass extract obtained by using ultrasonic waves. Four parameters of the extraction process, such as extraction temperature, solvent/material ratio, extraction time, and ultrasonic output power, were studied. The obtained results were then optimized by using Response Surface Methodology (RSM) and Box-Behnken experimental design.
Results and discussion. The optimal technological parameters of the extraction process included extraction temperature of 35°C, solvent/material ratio of 9.5:1 (v/w), extraction time of 90 min, and ultrasonic output power of 145 W. Under optimal conditions, canthaxanthin and total carotenoid contents were determined as 14.95 ± 0.12 and 18.21 ± 0.11 mg/g respectively, which were compatible with theoretical calculations ‒ 15.074 and 18.263 mg/g, respectively.
Conclusion. Current results confirmed that the strain of halophilic P. carotinifaciens VTP20181 is a potential source for canthaxanthin biosynthesis.
Keywords
Paracoccus carotinifaciens VTP20181, canthaxanthin, total carotenoid, optimization, response surface methodology
REFERENCES
  1. Namitha KK, Negi PS. Chemistry and biotechnology of carotenoids. Critical Reviews in Food Science and Nutrition. 2010;50(8):728–760. https://doi.org/10.1080/10408398.2010.499811.
  2. Torrissen OJ, Christiansen R. Requirements for carotenoids in fish diets. Journal of Applied Ichthyology. 1995;11(3–4):225–230. https://doi.org/10.1111/j.1439-0426.1995.tb00022.x.
  3. Stahl W, Sies H. Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2005;1740(2):101–107. https://doi.org/10.1016/j.bbadis.2004.12.006.
  4. Liñán-Cabello MA, Paniagua-Michel J, Hopkins PM. Bioactive roles of carotenoids and retinoids in crustaceans. Aquaculture Nutrition. 2002;8(4):299–309. https://doi.org/10.1046/j.1365-2095.2002.00221.x.
  5. Liau B-C, Shen C-T, Liang F-P, Hong S-E, Hsu S-L, Jong T-T, et al. Supercritical fluids extraction and antisolvent purification of carotenoids from microalgae and associated bioactivity. The Journal of Supercritical Fluids. 2010;55(1):169–175. https://doi.org/10.1016/j.supflu.2010.07.002.
  6. Peng J, Yuan J-P, Wu C-F, Wang J-H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Marine Drugs. 2011;9(10):1806–1828. https://doi.org/10.3390/md9101806.
  7. Kläui H. Industrial and commercial uses of carotenoids. In: Britton G, Goodwin TW, editors. Carotenoid chemistry and biochemistry; Pergamon Press; 1981. pp. 309–328.
  8. Marusich WL, Bauernfeind JC. Oxycarotenoids in poultry feeds. In: Stewart GF, Schweigert BS. Hawthorn J, editors. Carotenoids as colorants and vitamin A precursors. Academic Press; 1981. pp. 319–462.
  9. Simpson KL, Katayama T, Chichester CO. Carotenoids in fish feeds. In: Stewart GF, Schweigert BS. Hawthorn J, editors. Carotenoids as colorants and vitamin A precursors. Academic Press; 1981. pp. 463–538.
  10. Joel J. Carotenoids market by type (astaxanthin, beta-carotene, lutein, lycopene, canthaxanthin, zeaxanthin, and others) for feed, food, supplements, cosmetics, and pharmaceuticals – global industry perspective, comprehensive analysis, size, share, growth, segmen. Trends and Forecast, 2015–2021 [Internet]. [cited 2020 Sep 20]. Available from: http://www.marketresearchstore.com/report/carotenoids-market-z76031.
  11. Cardoso LAC, Karp SG, Vendruscolo F, Kanno KYF, Zoz LIC, Carvalho JC. Biotechnological production of carotenoids and their applications in food and pharmaceutical products. In: Cvetkovic DJ, Nikolic GS, editors. Carotenoids. IntechOpen; 2017. https://doi.org/10.5772/67725.
  12. Palozza P, Maggiano N, Calviello G, Lanza P, Piccioni E, Ranelletti FO, et al. Canthaxanthin induces apoptosis in human cancer cell lines. Carcinogenesis. 1998;19(2):373–376. https://doi.org/10.1093/carcin/19.2.373.
  13. Veiga-Crespo P, Blasco L, Do Santos FR, Poza M, Villa TG. Influence of culture conditions of Gordonia jacobaea MV-26 on canthaxanthin production. International Microbiology. 2005;8(1):55–58.
  14. Choubert G, Storebakken T. Dose response to astaxanthin and canthaxanthin pigmentation of rainbow trout fed various dietary carotenoid concentrations. Aquaculture. 1989;81(1):69–77. https://doi.org/10.1016/0044-8486(89)90231-7.
  15. Strati I, Sinanoglou VJ, Kora L, Miniadis-Meimaroglou S, Oreopoulou V. Carotenoids from foods of plant, animal and marine origin: An efficient HPLC-DAD separation method. Foods. 2012;1(1):52–65. https://doi.org/10.3390/foods1010052.
  16. Dufossé L. Pigments, microbial. In: Schaechter M, editor. Encyclopedia of microbiology. Academic Press; 2009. pp. 457–471. https://doi.org/10.1016/B978-012373944-5.00155-3.
  17. Suhonen R, Plosila M. The effect of beta-carotene in combination with canthaxanthin, ro 8–8427 (Phenoro®), in treatment of polymorphous light eruptions. Dermatology. 1981;163(2):172–176. https://doi.org/10.1159/000250156.
  18. Arden GB, Oluwole JOA, Polkinghorne P, Bird AC, Barker FM, Norris PG, et al. Monitoring of patients taking canthaxanthin and carotene: An electroretinographic and ophthalmological survey. Human & Experimental Toxicology. 1989;8(6):439–450. https://doi.org/10.1177/096032718900800603.
  19. Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KN, et al. Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends in Food Science and Technology. 2005;16(9):389–406. https://doi.org/10.1016/j.tifs.2005.02.006.
  20. Bhosale P, Bernstein PS. Microbial xanthophylls. Applied Microbiology and Biotechnology. 2005;68(4):445–455. https://doi.org/10.1007/s00253-005-0032-8.
  21. Khodaiyan K, Razavi SH, Emam-Djomeh Z, Mousavi SMA, Hejazi MA. Effect of culture conditions on canthaxanthin production by Dietzia natronolimnaea HS-1. Journal of Microbiology and Biotechnology. 2007;17(2):195–201.
  22. Ho KKHY, Ferruzzi MG, Liceaga AM, San Martín-González MF. Microwave-assisted extraction of lycopene in tomato peels: Effect of extraction conditions on all-trans and cis-isomer yields. LWT – Food Science and Technology. 2015;62(1):160–168. https://doi.org/10.1016/j.lwt.2014.12.061.
  23. Singh D, Barrow CJ, Mathur AS, Tuli DK, Puri M. Optimization of zeaxanthin and β-carotene extraction from Chlorella saccharophila isolated from New Zealand marine waters. Biocatalysis and Agricultural Biotechnology. 2015;4(2):166–173. https://doi.org/10.1016/j.bcab.2015.02.001.
  24. Jaeschke DP, Menegol T, Rech R, Mercali GD, Marczak LDF. Carotenoid and lipid extraction from Heterochlorella luteoviridis using moderate electric field and ethanol. Process Biochemistry. 2016;51(10):1636–1643. https://doi.org/10.1016/j.procbio.2016.07.016.
  25. Zaghdoudi K, Framboisier X, Frochot C, Vanderesse R, Barth D, Kalthoum-Cherif J, et al. Response surface methodology applied to Supercritical Fluid Extraction (SFE) of carotenoids from Persimmon (Diospyros kaki L.). Food Chemistry. 2016;208:209–219. https://doi.org/10.1016/j.foodchem.2016.03.104.
  26. Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, et al. Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chemistry. 2008;10(1):31–36. https://doi.org/10.1039/b711717e.
  27. Capello C, Fischer U, Hungerbühler K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chemistry. 2007;9(9):927–934. https://doi.org/10.1039/b617536h.
  28. Goula AM, Ververi M, Adamopoulou A, Kaderides K. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrasonics Sonochemistry. 2017;34:821–830. https://doi.org/10.1016/j.ultsonch.2016.07.022.
  29. Desai RK, Streefland M, Wijffels RH, Eppink MHM. Novel astaxanthin extraction from Haematococcus pluvialis using cell permeabilising ionic liquids. Green Chemistry. 2016;18(5):1261–1267. https://doi.org/10.1039/c5gc01301a.
  30. Amiri-Rigi A, Abbasi S. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments. Food Chemistry. 2016;197:1002–1007. https://doi.org/10.1016/j.foodchem.2015.11.077.
  31. Le XD, Nguyen MC, Vu DH, Pham MQ, Pham QL, Nguyen QT, et al. Optimization of microwave-assisted extraction of total phenolic and total flavonoid contents from fruits of Docynia indica (Wall.) decne. Using response surface methodology. Processes. 2019;7(8). https://doi.org/10.3390/pr7080485.
  32. Le XT, Vi VLL, Toan TQ, Bach LG, Truc TT, Ha PTH. Extraction process of polyphenols from soybean (Glycine max L.) sprouts: Optimization and evaluation of antioxidant activity. Processes. 2019;7(8):1–18. https://doi.org/10.3390/PR7080489.
  33. de Carvalho LMJ, Gomes PB, Godoy RLDO, Pacheco S, do Monte PHF, de Carvalho JLV, et al. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International. 2012;47(2):337–340. https://doi.org/10.1016/j.foodres.2011.07.040.
  34. Tzanova M. Quantification of astaxanthin and canthaxanthin in muscle tissues of rainbow trout Oncorhynchus mykiss and brook trout Salvelinus fontinalis. Turkish Journal of Fisheries and Aquatic Sciences. 2018;18(9):1053–1061. https://doi.org/10.4194/1303-2712-v18_9_05.
  35. Pham HH. The data analysis and planning of experiments in chemical research. Ha Noi; 2007. pp. 89–99. (In Viet.).
  36. Aflaki N. Optimization of carotenoid extraction in peel and flesh of cantaloupe (Cucumis melo L.) with ethanol solvent. Master’s thesis. Université Laval; 2012.
  37. Das S, Bera D. Mathematical model study on solvent extraction of carotene from carrot. International Journal of Research in Engineering and Technology. 2013;02(09):343–349. https://doi.org/10.15623/ijret.2013.0209052.
  38. Tan PW, Tan CP, Ho CW. Antioxidant properties: Effects of solid-to-solvent ratio on antioxidant compounds and capacities of Pegaga (Centella asiatica). International Food Research Journal. 2011;18(2):557–562.
  39. Roohinejad S, Oey I, Everett DW, Niven BE. Evaluating the effectiveness of β-carotene extraction from pulsed electric field-treated carrot pomace using oil-in-water microemulsion. Food and Bioprocess Technology. 2014;7(11):3336–3348. https://doi.org/10.1007/s11947-014-1334-6.
  40. Strati IF, Oreopoulou V. Effect of extraction parameters on the carotenoid recovery from tomato waste. International Journal of Food Science and Technology. 2011;46(1):23–29. https://doi.org/10.1111/j.1365-2621.2010.02496.x.
  41. Yan F, Fan K, He J, Gao M. Ultrasonic-assisted solvent extraction of carotenoids from rapeseed meal: Optimization using response surface methodology. Journal of Food Quality. 2015;38(6):377–386. https://doi.org/10.1111/jfq.12154.
How to quote?
Duy LX, Toan TQ, Anh DV, Hung NP, Huong TTT, Long PQ, et al. Optimization of canthaxanthin extraction from fermented biomass of Paracoccus carotinifacuens 20181 VTP bacteria strain isolated in Vietnam. Foods and Raw Materials. 2021;9(1):117–125. https://doi.org/10.21603/2308-4057-2021-1-117-125
About journal

Download
Contents
Abstract
Keywords
References