Affiliation
a Vavilov Saratov State Agrarian University, Saratov, Russia
Copyright ©Giro et al. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0. (
http://creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.
Received 26 February, 2019 |
Accepted in revised form 18 September, 2019 |
Published 25 February, 2020
Abstract
Nowadays, the development of environmentally-friendly packaging materials is relevant worldwide. Biodegradable packaging materials are promising due to their safety and ability to extend shelf life of food products. This study aimed to investigate the properties of biodegradable film based on a bacterial exopolysaccharide (xanthan) with the view to extend the quality and shelf life of chilled meat products. We studied pork and carp samples packed in biodegradable film and stored at 0–2°C. Biodegradable packaging had positive effects on sensory, physicochemical, and microbiological parameters, as well as on ecological safety of the raw materials. During storage of packed chilled pork, its mass loss decreased from 2.16 to 0.21% (norm to 0.30%), and water activity reduced from 0.985 to 0.960, which had a positive effect on the microbiological resistance of pork during storage. The use of biodegradable film contributed to the preservation of quality and freshness of carp, which was confirmed by sensory and microbiological indicators. Total microbial contamination in carp packed in biodegradable film was significantly lower than that in unpacked samples, which extended its shelf life for one day compared to control. Biodegradable packaging also allowed mass loss and pH value to decrease during storage and inhibited oxidation processes in the samples under study. Free fatty acid content decreased by a factor of two, and peroxides, by 7%. Thus, biodegradable films can be effective film coatings to use in the food industry. This method of packaging not only preserves the functional and technological properties of food products, lowers their mass loss, and extends their shelf life, but also reduces costs and is environmentally friendly.
Keywords
Biodegradable packaging,
film coating,
xanthan,
shelf life,
food quality,
meat products
FUNDING
This research was funded by the Russian Scientific Foundation 19-76-10013 “Development and implementation
of technology for production and storage of environmentally safe lamb enriched with essential trace elements”.
REFERENCES
- Johnson RA, Bhattacharyya GK. Statistics. Principles and methods. 6th ed. USA: John Wiley & Sons, Inc; 2010. 706 p.
- Lisitsyn AB, Semenova AA, Kuznetsova TG, Dydykin AS, Nasonova VV. Study of the effect of sex and type of muscles on the development of quality defects in turkey meat after the slaughter. Foods and Raw Materials. 2018;6(1):63–70. DOI: http://doi.org/10.21603/2308-4057-2018-1-63-70.
- Akshaykranth A, Rao TV, Kumar RR. Growth of ZnO nanorods on biodegradable poly (lactic acid) (PLA) substrates by low temperature solution method. Materials Letters. 2020;259. DOI: https://doi.org/10.1016/j.matlet.2019.126807.
- Fakhouri FM, Nogueira GF, de Oliveira RA, Velasco JI. Bioactive edible films based on arrowroot starch incorporated with cranberry powder: Microstructure, thermal properties, ascorbic acid content and sensory analysis. Polymers. 2019;11(10). DOI: https://doi.org/10.3390/polym11101650.
- Giro TM, Adreeva SV, Litvishko KA. Edible food coating based on sodium alginate: prospects for use. Meat Industry. 2017;(5):35–37. (In Russ.).
- Giro TM, Egorova ZhG, Avdeenko VS, Molchanov AV. Ante-mortem formation of the qualitative characteristics of environmentally friendly meat raw material by intensification of the mechanisms of the metabolic processes in gilts. Theory and Practice of Meat Processing. 2016;1(1):32–45. (In Russ.). DOI: https://doi.org/10.21323/2114-441X-2016-1-32-45.
- Yang C, Tang H, Wang Y, Liu Y, Wang J, Shi W, et al. Development of PLA-PBSA based biodegradable active film and its application to salmon slices. Food Packaging and Shelf Life. 2019;22. DOI: https://doi.org/10.1016/j.fpsl.2019.100393.
- Menzel C. Starch structures and their usefulness in the production ofpackaging materials. Uppsala: Swedish University of Agricultural Sciences; 2014. 57 p.
- MonoSol: Dissolvable film for food ingredients [Internet]. [cited 2019 Jan 25]. Available from: https://www.packworld.com/company/monosol-ll c/products.
- Savitskaya TA. Edible polymer films and coatings: background and current state. Polymer materials and technology. 2016;2(2):6–36. (In Russ.).
- Beloglazova KE, Ulyanin AA, Gornevskaya AD, Palagin VI, Rysmukhambetova GE, Gorelnikova EA, et al. Biodegradable food film coating. Russia patent RU 2662008C1. 2017.
- Zhuravskaya NK, Gutnik BE, Zhuravskaya NA. Tekhnokhimicheskiy kontrolʹ proizvodstva myasa i myasoproduktov [Techno-chemical control of meat and meat products]. Moscow: Kolos; 2001. 174 p. (In Russ.).
- Kozyrev IV, Mittelshtein TM, Pchelkina VA, Kuznetsova TG, Lisitsyn AB. Marbled beef quality grades under various ageing conditions. Foods and Raw Materials. 2018;6(2):429–437. DOI: http://doi.org/10.21603/2308-4057-2018-2-429-437.
- Osnovy gosudarstvennoy politiki Rossiyskoy Federatsii v oblasti zdorovogo pitaniya naseleniya na period do 2020 goda [Fundamentals of the state policy of the Russian Federation in the field of healthy nutrition for the period up to 2020] [Internet]. [cited 2019 Jan 25]. Available from: https://rg.ru/2010/11/03/pravila-dok.html.
- Jensen C, Lauridsen C, Bertelsen G. Dietary vitamin E: Quality and storage stability of pork and poultry. Trends in Food Science and Technology. 1998;9(2):62–72. DOI: https://doi.org/10.1016/S0924-2244(98)00004-1.
- Leistner L. Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology. 2000;55(1–3):181–186. DOI: https://doi.org/10.1016/S0168-1605(00)00161-6.
- Jeevahan J, Chandrasekaran M. Influence of nanocellulose additive on the film properties of native rice starch based edible films for food packaging. Recent Patents on Nanotechnology. 2019. DOI: https://doi.org/10.2174/1872210513666190925161302.
- Mahmoodi A, Ghodrati S, Khorasani M. High-strength, low-permeable, and light-protective nanocomposite films based on a hybrid nanopigment and biodegradable PLA for food packaging applications. ACS Omega. 2019;4(12):14947–14954. DOI: https://doi.org/10.1021/acsomega.9b01731.
- Wang X, Wang S, Liu W, Wang S, Zhang L, Sang R, et al. Facile fabrication of cellulose composite films with excellent UV resistance and antibacterial activity. Carbohydrate Polymers. 2019;225. DOI: https://doi.org/10.1016/j.carbpol.2019.115213.
- Pavlath AE, Orts W. Edible films and coatings: why, what, and how? In: Huber KC, Embuscado ME, editors. Edible films and coatings for food applications. New York: Springer; 2009. pp. 1–23. DOI: https://doi.org/10.1007/978-0-387-92824-1_1.
- The WikiCell: Nature-inspired edible packaging [Internet]. [cited 2019 Jan 25]. Available from: https://www.designindaba.com/articles/creative-work/wikicell-nature-inspired-edible-packaging.
How to quote?
Giro TM, Beloglazova KE, Rysmukhambetova GE, Simakova IV, Karpunina LV, Rogojin AA, et al. Xanthan-based biodegradable packaging for fish and meat products. Foods and Raw Materials. 2020;8(1):67–75. DOI: http://doi.org/10.21603/2308-4057-2020-1-67-75