ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Processing cottage cheese whey components for functional food production

Abstract
Introduction. The study offers a new rational approach to processing cottage cheese whey and using it as a highly nutritional functional ingredient in food production. We proposed a scientifically viable method for hydrolyzing cottage cheese whey with enzyme preparations of acid proteases from Aspergillus oryzae with an activity of 400 units/g and a pH range of 3.0 to 5.0.
Study objects and methods. Pre-concentrated whey was enzymatically hydrolyzed at 30°C, 40°C, and 50°C for 60 to 180 min (pH 4.6). Non-hydrolyzed whey protein concentrates were used as a control. The amount of enzyme preparation was determined by calculation. All hydrolysate samples showed an increase in active acidity compared to the control samples. Further, we conducted a full-factor experiment with three levels of variation. The input parameters included temperature, duration of hydrolysis, and a substrate-enzyme ratio; the output parameters were the degree of hydrolysis and antioxidant capacity.
Results and discussion. The experiment showed the following optimal parameters for hydrolyzing cottage cheese whey proteins with the enzyme preparation of proteases produced by Aspergillus oryzae: temperature – 46.4°C; duration – 180 min; and the amount of enzyme preparation – 9.5% of the protein content. The antioxidant capacity was 7.51 TE mmol/L and the degree of hydrolysis was 17.96%.
Conclusion. Due to its proven antioxidant capacity, the whey protein hydrolysate obtained in the study can be used as a functional food ingredient.
Keywords
Cottage cheese whey, protein, enzymatic hydrolysis, functional ingredient, Aspergillus oryzae, concentration factor
FUNDING
This work was part of the State Assignment given within the “Program of Fundamental Scientific Research by the State Academies of Sciences for 2013-2020” (theme code 0578-2019-0023, Section 2) to “determine the relations between the parameters of biocatalytic conversion of protein-carbohydrate systems and the composition of enzyme complexes for the formation of desired functional properties”.
REFERENCES
  1. Khramtsov AG. Problema polnogo i ratsionalʹnogo ispolʹzovaniya molochnoy syvorotki v usloviyakh rynochnoy ehkonomiki [The problem of full and rational use of whey in a market economy]. News of institutes of higher education. Food technology. 1994;218–219(1–2):5–9. (In Russ.).
  2. Zolotaryova MS, Volodin DN, Topalov VK, Evdokimov IA, Chablin BV. O pererabotke molochnoy syvorotki i vnedrenii nailuchshikh tekhnologiy [On processing whey and introducing the best technologie]. Milk Processing. 2016;201(7):17–19. (In Russ.).
  3. Sviridenko YuYa, Kravshenko EF, Yakovleva OA. Milk whey application and local purification of effluents. Dairy Industry. 2008;(11):58–60. (In Russ.).
  4. Galstyan AG, Aksyonova LM, Lisitsyn AB, Oganesyants LA, Petrov AN. Modern approaches to storage and effective processing of agricultural products for obtaining high-quality food products. Vestnik Rossijskoj Akademii Nauk. 2019;89(5):539–542. (In Russ.). DOI: https://doi.org/10.31857/S0869-5873895539-542.
  5. Rogov IA, Oreshkin EN, Sergeev VN. Medical and technological aspects of the development and production of functional foods. Food Industry. 2017;(1):13–15. (In Russ.).
  6. Lisitsyn AB, Chernukha IM, Lunina OI. Modern trends in the development of the functional food industry in Russia and abroad. Theory and Practice of Meat Processing. 2018;3(1):29–45. (In Russ.). DOI: https://doi.org/10.21323/2414-438X-2018-3-1-29-45.
  7. Zobkova Z, Fedulova L, Fursova T, Zenina D, Kotenkova E. Evaluation of the adaptogenic propertries of the Quark product enriched with probiotics, polyphenols and vitamins. Potravinarstvo Slovak Journal of Food Sciences. 2019;13(1):713–719. DOI: https://doi.org/10.5219/1156.
  8. Sergeev VN, Bobrovnitskiy IP. Vliyanie optimizatsii ratsionov pitaniya bolʹnykh pervichnym khronicheskim gastroduodenitom i yazvennoy boleznʹyu dvenadtsatiperstnoy kishki na dinamiku osnovnykh klinicheskikh sindromov, neyroehndokrinnyy i psikhologicheskiy status [The influence of diet optimisation for patients with primary chronic gastroduodenitis and duodenal ulcer on the dynamics of the main clinical syndromes, neuroendocrine and psychological status]. Journal of restorative medicine and rehabilitation. 2010;35(1):24–29. (In Russ.).
  9. Lisitsyn AB, Chernukha IM, Lunina OI. Food hypersensitivity and products of animal origin resources. Theory and Practice of Meat Processing. 2017;2(2):23–36. (In Russ.). DOI: https://doi.org/10.21323/2414-438X-2017-2-2-23-36.
  10. Zolotaryov NA, Fedotova OB, Agarkova EYu. Curds whey hydrolyzates for curds emulsion products. Dairy Industry. 2017;(8):36–38. (In Russ.).
  11. Tasturganova E, Dikhanbaeva F, Prosekov A, Zhunusova G, Dzhetpisbaeva B, Matibaeva A. Research of fatty acid composition of samples of bio-drink made of camel milk. Current Research in Nutrition and Food Science. 2018;6(2):491–499. DOI: https://doi.org/10.12944/CRNFSJ.6.2.23.
  12. Lisitsyn AB. Perspektiva razvitiya pishchevoy biotekhnologii [The prospects of food biotechnology]. Technologies of food and processing industry of AIC – healthy food. 2013;(1):11–14. (In Russ.).
  13. Kharitonov VD, Pavlo VV, Pismenskaya VN. Issledovanie osnovnykh faktorov, vliyayushchikh na formirovanie kachestvennykh pokazateley novykh molochnykh produktov slozhnogo syrʹevogo sostava [A study of the main factors affecting the formation of quality indicators of new dairy products from complex raw materials]. Storage and Processing of Farm Products. 2001;(9):7–10. (In Russ.).
  14. Tutelʹyan VA, Knyazhev VA. Realizatsiya kontseptsii gosudarstvennoy politiki zdorovogo pitaniya naseleniya Rossii: nauchnoe obespechenie [Implementing the concept of the state policy of healthy nutrition for the population of Russia: scientific support]. Problems of Nutrition. 2000;69(3):4–7. (In Russ.).
  15. Novoselova MV, Prosekov AYu. Technological options for the production of lactoferrin. Foods and Raw Materials. 2016; 4(1):90–101. DOI: https://doi.org/10.21179/2308-4057-2016-1-90-101.
  16. Maruyama S, Mitachi H, Awaya J, Kurono M, Tomizuka N, Suzuki H. Angiotensin I-converting enzyme inhibitory activity of the C-terminal hexapeptide of αs1-casein. Agricultural and Biological Chemistry. 1987;51(9):2557–2561. DOI: https://doi.org/10.1271/bbb1961.51.2557.
  17. Meisel H, Bockelmann W. Bioactive peptides encrypted in milk proteins: Proteolytic activation and thropho-functional properties. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology. 1999;76(1–4):207–215. DOI: https://doi.org/10.1023/A:1002063805780.
  18. Niki E, Yoshida Y, Saito Y, Noguchi N. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochemical and Biophysical Research Communications. 2005;338(1):668–676. DOI: https://doi.org/10.1016/j.bbrc.2005.08.072.
  19. Prosekov AYu, Dyshlyuk LS, Milentyeva IS, Sykhikh SA, Babich OO, Ivanova SA, et al. Antioxidant and antimicrobial activity of bacteriocin-producing strains of lactic acid bacteria isolated from the human gastrointestinal tract. Progress in Nutrition. 2017;19(1):67–80. DOI: https://doi.org/10.23751/pn.v19i1.5147.
  20. Petrova EI, Gavrilova NB. Research of enzymatic hydrolysis of milk whey proteins and development of a bioactive component for a sports nutrition. Agrarian Bulletin of the Urals. 2013;114(8):33–35. (In Russ.).
  21. Shipulin VI, Kulikov YuI, Lupandina ND, Nazarova ON. Technology of sausage products using adapted components of milk whey. Meat Industry. 2013;(11):18–22. (In Russ.).
  22. Shipulin VI, Postnikov SI, Statsenko EN, Marchenko VV, Sudakova NV. Use of milk protein-carbohydrate mixtures in cooked sausages. Meat Industry. 2012;(6):22–25. (In Russ.).
  23. Miklyashevski P, Pryanishnikov VV, Babicheva EB, Ilʹtyakov AV. Ispolʹzovanie soevykh belkov v pererabotke myasa [The use of soy proteins in meat processing]. All about the meat. 2006;(3):10–13. (In Russ.).
  24. Omarov RS, Shlykov SN, Sycheva OV, Kravets AB. Molochnye belki v myasnykh delikatesakh [Milk proteins in meat delicacies]. Meat Technology. 2010;96(12):48–49. (In Russ.).
  25. Nazarova ON, Shipulin VI. Theoretical and practical aspects of biotechnology meat with micro-particle whey protein. Science. Innovations. Technologies. 2013;(1):55–62. (In Russ.).
  26. Volodin DN, Zolotaryova MS, Topalov VK, Evdokimov IA, Chablin BV. Osobennosti pererabotki tvorozhnoy syvorotki [Peculiarities of processing cottage cheese whey]. Milk Processing. 2017;209(3):6–9. (In Russ.).
  27. Spencer JFT, Spencer DM. Yeasts in natural and artificial habitats. Berlin, Heidelberg: Springer; 1997. 381 p. DOI: https://doi.org/10.1007/978-3-662-03370-8.
  28. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 1999;26(9–10):1231–1237. DOI: https://doi.org/10.1016/S0891-5849(98)00315-3.
  29. Spellman D, O’Cuinn G, FitzGerald RJ. Bitterness in Bacillus proteinase hydrolysates of whey proteins. Food Chemistry. 2009;114(2):440–446. DOI: https://doi.org/10.1016/j.foodchem.2008.09.067.
How to quote?
Agarkova EYu, Kruchinin AG, Zolotaryov NA, Pryanichnikova NS, Belyakova ZYu, Fedorova TV. Processing cottage cheese whey components for functional food production. Foods and Raw Materials. 2020;8(1):52–59. DOI: http://doi.org/10.21603/2308-4057-2020-1-52-59
About journal

Download
Contents
Abstract
Keywords
Funding
References