ISSN 2308-4057 (Печать),
ISSN 2310-9599 (Онлайн)

Antioxidant, anti-inflammatory, antimicrobial, and anticancer properties of green broad bean pods (Vicia faba L.)

Аннотация
This study featured broad/fava bean pods as by-products of food production. It assessed the chemical composition of green bean pods (Vicia faba L.) and their methanolic extract.
The extract was tested in vitro for antioxidant, anti-inflammatory, antimicrobial, and anticancer activities against prostate cancer (Pc3) and liver cancer (HepG2) cells. Broad bean pods proved to be rich in carbohydrates, fiber, protein, potassium, calcium, and magnesium. The extract contained 286 mg GAE/g total phenols and 105 mg QE/g total flavonoids. The antioxidant activity of the methanolic extract was measured by 1,1-diphenyl-2-picryl hydrazyl (DPPH) assay. The highest DPPH scavenging activity belonged to the extract concentrations of 1000 μg/mL (80.5%) and 500 μg/mL (73.7%), whereas the IC50 value was 87.35 μg/mL. The methanolic extract possessed the anti-inflammatory effect as it significantly reduced the hemolysis of red blood cells. The maximal inhibition percentage reached 66.7% at 1000 μg/mL. Regarding the antimicrobial activity, the broad bean pod methanolic extract inhibited Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, as well as Candida albicans. The extract reduced the cell viability of human hepatocarcinoma (HepG2) and prostate cancer (PC3) cells in a concentration-dependent manner. It also caused significant changes in cell shape, compared to the control.
Therefore, broad beans can be recommended for human consumption together with pods, fresh or cooked, as a potential source of bioactive substances in functional food production.

A preprint of the manuscript for this article was published on the preprint platform Research Square. See a preprint at https://doi.org/10.21203/rs.3.rs-2591126/v1 

Ключевые слова
Vicia faba L., pods, anticancer effect, antioxidant activity, anti-inflammatory properties, antimicrobial ability, DPPH radicals
СПИСОК ЛИТЕРАТУРЫ
  1. Abdel-Aal E-SM, Hucl P. Amino acid composition and in vitro protein digestibility of selected ancient wheats and their end products. Journal of Food Composition and Analysis. 2002;15(6):737–747. https://doi.org/10.1006/jfca.2002.1094
  2. Tazrart K, Lamacchia C, Zaidi F, Haros M. Nutrient composition and in vitro digestibility of fresh pasta enriched with Vicia faba. Journal of Food Composition and Analysis. 2016;47:8–15. https://doi.org/10.1016/j.jfca.2015.12.007
  3. Bouhnik Y, Flourie B, D'Agay-Abensour L, Pochart P, Gramet G, Durand M, et al. Administration of transgalacto-oligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy human. The Journal of Nutrition. 1997;127(3):444–448. https://doi.org/10.1093/jn/127.3.444
  4. Campos-Vega R, Loarca-Piña G, Oomah BD. Minor components of pulses and their potential impact on human health. Food Research International. 2010;43(2):461–482. https://doi.org/10.1016/j.foodres.2009.09.004
  5. Aune D, De Stefani E, Ronco A, Boffetta P, Deneo-Pellegrini H, Acosta G, et al. Legume intake and the risk of cancer: A multisite case – control study in Uruguay. Cancer Causes and Control. 2009;20:1605–1615. https://doi.org/10.1007/s10552-009-9406-z
  6. Anderson JW, Major AW. Pulses and lipaemia, short- and long-term effect: Potential in the prevention of cardiovascular disease. British Journal of Nutrition. 2002;88(S3):263–271. https://doi.org/10.1079/BJN2002716
  7. Ranilla LG, Kwon Y-I, Genevese MI, Lajolo FM, Shetty K. Effect of thermal treatment on phenolic compounds and functionality linked to type 2 diabetes and hypertension management of Peruvian and Brazilian bean cultivars (Phaseolus vulgaris L.) using in vitro methods. Journal of Food Biochemistry. 2010;34(2):329–355. https://doi.org/10.1111/j.1745-4514.2009.00281.x
  8. Akpinar N, Akpinar MA, Türkoğlu S. Total lipid content and fatty acid composition of the seeds of some Vicia L. species. Food Chemistry. 2001;74(4):449–453. https://doi.org/10.1016/S0308-8146(01)00162-5
  9. Singh AK, Bhatt BP, Sundaram PK, Gupta AK, Singh D. Planting geometry to optimize growth and productivity faba bean (Vicia faba L.) and soil fertility. Journal of Environmental Biology. 2013;34:117–122.
  10. Hossain MS, Mortuza MG. Chemical composition of Kalimatar, a locally grown strain of faba bean (Vicia faba L.). Pakistan Journal of Biological Sciences. 2006;9(9):1817–1822. https://doi.org/10.3923/pjbs.2006.1817.1822
  11. Merghem R, Jay M, Brun N, Voirin B. Qualitative analysis and HPLC isolation and identification of procyanidins from Vicia faba. Phytochemical Analysis. 2004;15(2):95–99. https://doi.org/10.1002/pca.731
  12. Amarowicz R, Troszynska A, Baryłko-Pikielna N, Shahidi F. Polyphenolics extracts from legume seeds: correlations between total antioxidant activity, total phenolics content, tannins content and astringency. Journal of Food Lipids. 2004;11(4):278–286. https://doi.org/10.1111/j.1745-4522.2004.01143.x
  13. Siah JA, Konczak I, Agboola S, Wood JA, Blanchard CL. In vitro investigations of the potential health benefits of Australian-grown faba beans (Vicia faba L.): Chemopreventive capacity and inhibitory effects on the angiotensin-converting enzyme, α-glucosidase, and lipase. British Journal of Nutrition. 2012;108(S1):S123–S134. https://doi.org/10.1017/S0007114512000803
  14. Boukhanouf S, Louaileche H, Perrin D. Phytochemical content and in vitro antioxidant activity of faba bean (Vicia faba L.) as affected by maturity stage and cooking practice. International Food Research Journal. 2016;23(3):954–961.
  15. Ikarashi N, Takeda R, Ito K, Ochiai W, Sugiyama K. The inhibition of lipase and glucosidase activities by acacia polyphenol. Evidence-Based Complementary and Alternative Medicine. 2011;2011. https://doi.org/10.1093/ecam/neq043
  16. El-Feky AM, Elbatanony MM, Mounier MM. Anti-cancer potential of the lipoidal and flavonoidal compounds from Pisum sativum and Vicia faba peels. Egyptian Journal of Basic and Applied Sciences. 2018;5(4):258–264. https://doi.org/10.1016/j.ejbas.11.001.
  17. Troszynska A, Estrella I, Lohpez-Amohres ML, Hernahndez T. Antioxidant activity of Pea (Pisum sativum L.) seed coat acetone extract. LWT – Food Science and Technology. 2002;35(2):158–164. https://doi.org/10.1006/fstl.2001.0831
  18. Mejri F, Selmi S, Martins A, Benkhoud H, Baati T, Chaabane H, et al. Broad bean (Vicia faba L.) pods: a rich source of bioactive ingredients with antimicrobial, antioxidant, enzyme inhibitory, anti-diabetic and health-promoting properties. Food and Function. 2018;9(4):2051–2069. https://doi.org/10.1039/C8FO00055G
  19. Mateos-Aparicio I, Redondo-Cuenca A, Villanueva-Suarez M-J. Broad bean and pea byproducts as sources of fiber-rich ingredients: Potential antioxidant activity measured in vitro. Journal of the Science of Food and Agriculture. 2012;92(3):697–703. https://doi.org/10.1002/jsfa.4633
  20. Macarulla MT, Medina C, de Diego MA, Chávarri M, Zulet MA, Martínez JA, et al. Effects of the whole seed and a protein isolate of faba bean (Vicia faba) on the cholesterol metabolism of hypercholesterolaemic rats. British Journal of Nutrition. 2001;85(5):607–614. https://doi.org/10.1079/bjn2000330
  21. Rizkalla SW, Bellisle F, Slama G. Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals. British Journal of Nutrition. 2002;88(S3):255–262. https://doi.org/10.1079/BJN2002715
  22. Valente IM, Cabrita ARJ, Malushi N, Oliveira HM, Papa L, Rodrigues JA, et al. Unravelling the phytonutrients and antioxidant properties of European Vicia faba L. seeds. Food Research International. 2019;116:888–896. https://doi.org/10.1016/j.foodres.2018.09.025
  23. Kumar A, Nidhi, Prasad N, Sinha SK. Nutritional and antinutritional attributes of faba bean (Vicia faba L.) germplasms growing in Bihar, India. Physiology and Molecular Biology of Plants. 2015;21(1):159–162. https://doi.org/10.1007/s12298-014-0270-2
  24. Apaydin H, Ertan S, Özekmekçi S. Broad bean (Vicia faba) – A natural source of L-dopa – Prolongs “on” periods in patients with Parkinson’s disease who have “on–off” fluctuations. Movement Disorders. 2000;15(1):164–166. https://doi.org/10.1002/1531-8257(200001)15:1%3C164::AID-MDS1028%3E3.0.CO;2-E
  25. Hacıseferoǧullar H, Gezer İ, Bahtiyarca Y, Menge HO. Determination of some chemical and physical properties of Sakız faba bean (Vicia faba L. Var. major). Journal of Food Engineering. 2003;60(4):475–479. https://doi.org/10.1016/S0260- 8774(03)00075-X
  26. Official Methods of Analysis. 17th Edition. Gaithersburg: AOAC; 2000.
  27. Pavlova D, Karadjova I. Chemical analysis of Teucrium species (Lamiaceae) growing on serpentine soils in Bulgaria. Journal of Plant Nutrition and Soil Science. 2012;175(6):891–899. https://doi.org/10.1002/jpln.201100046
  28. Trease GE, Evans WC. Pharmacognosy. 12th Edn. London; Philadelphia: Bailliere Tinadl; 1989. 856 p.
  29. Harborne JB. Phytochemical methods – A guide to modern techniques of plant analysis. London: Chapman and Hall; 1998. 296 p.
  30. Singleton VI, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. American Journal of Enology and Viticulture. 1965;16(3):144–158.
  31. Dehpour AA, Ibrahimzadeh MA, Fazel NS, Mohammad NS. Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasas y Aceites. 2009;60(4):405–412.
  32. Patel RM, Patel NJ. In vitro antioxidant activity of coumarin compounds by DPPH, superoxide and nitric oxide free radical scavenging methods. Journal of Advanced Pharmacy Education and Research. 2011;1:52–68.
  33. Koleva II, van Beek TA, Linssen JPH, de Groot A, Evstatieva LN. Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochemical Analysis. 2002;13(1):8–17. https://doi.org/10.1002/pca.611
  34. Debnath T, Park P-J, Deb Nath NC, Samad NB, Park HW, Lim BO. Antioxidant activity of Gardenia jasminoides Ellis fruit extracts. Food Chemistry. 2011;128(3):697–703. https://doi.org/10.1016/j.foodchem.2011.03.090
  35. Magaldia S, Mata-Essayaga S, de Caprilesa CH, Pereza C, Colella MT, Olaizolaa C, et al. Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases. 2004;8(1):39–45. https://doi.org/10.1016/j.ijid.2003.03.002
  36. Sinicropi MS, Iacopetta D, Rosano C, Randino R, Caruso A, Saturnino C, et al. N-thioalkylcarbazoles derivatives as new anti-proliferative agents: Synthesis, characterization and molecular mechanism evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry. 2018;33(1):434–444. https://doi.org/10.1080/14756366.2017.1419216
  37. McCormick K, Salcedo J. SPSS statistics for data analysis and visualization. John Wiley & Sons; 2017. 528 p.
  38. Mateos-Aparicio I, Redondo-Cuenca A, Villanueva-Suárez M-J, Zapata-Revilla M-A, Tenorio-Sanz M-D. Pea pod, broad bean pod and okara, potential sources of functional compounds. LWT – Food Science and Technology. 2010;43(9):1467–1470. https://doi.org/10.1016/j.lwt.2010.05.008
  39. Vernaleo B. Back to basics: Why Basic Research (and the fava bean) are key to the cure (PDF). Parkinson's Disease Foundation; 2016.
  40. Jagessar RC. Phytochemical screening and chromatographic profile of the ethanolic and aqueous extract of Passiflora edulis and Vicia faba L. (Fabaceae). Journal of Pharmacognosy and Phytochemistry. 2017;6(6): 1714–1721.
  41. Baginsky C, Peña-Neira Á, Cáceres A, Hernández T, Estrella I, Morales H, et al. Phenolic compound composition in immature seeds of fava bean (Vicia faba L.) varieties cultivated in Chile. Journal of Food Composition and Analysis. 2013;31(1):1–6. https://doi.org/10.1016/j.jfca.2013.02.003
  42. Madar Z, Stark AH. New legume sources as therapeutic agents. British Journal of Nutrition. 2002;88(S3):287–292. https://doi.org/10.1079/BJN2002719
  43. Valente IM, Maiaa MRG, Malushia N, Oliveiraa HM, Papac L, Rodriguesb JA, et al. Profiling of phenolic compounds and antioxidant properties of European varieties and cultivars of Vicia faba L. pods. Phytochemistry. 2018;125:223–229. https://doi.org/10.1016/j.phytochem.2018.05.011
  44. Chan PT, Matanjun P, Md Yasir S, Tan TS. Antioxidant activities and polyphenolics of various solvent extracts of red seaweed, Gracilaria changii. Journal of Applied Phycology. 2015;27:2377–2386. https://doi.org/10.1007/s10811-014-0493-1
  45. Chaieb N, González JM, López-Mesas M, Bouslama M, Valiente M. Polyphenols content and antioxidant capacity of thirteen faba bean (Vicia faba L.) genotypes cultivated in Tunisia. Food Research International. 2011;44(4):970–977. https://doi.org/10.1016/j.foodres.2011.02.026
  46. Turco I, Ferritti G, Bacchetti T. Reviewof the health benefits of faba bean (Vicia faba L.) polyphenols. Journal of Food and Nutrition Research. 2016;55(4):283–293.
  47. Carbonaro M, Virgili F, Carnovale E. Evidence for protein-tannin interaction in legumes: Implications in the antioxidant properties of faba bean tannins. LWT – Food Science and Technology. 1996;29(8):743–750. https://doi.org/10.1006/fstl.1996.0116
  48. Spanou C, Stagos D, Tousias L, Angelis A, Aligiannis N, Skaltsounis A-L, et al. Assessment of antioxidant activity of extracts from unique Greek varieties of Leguminosae plants using in vitro assays. Anticancer Research. 2007;27:3403–3410.
  49. Choudhary DK, Mishra A. In vitro and in silico interaction of faba bean (Vicia faba L.) seed extract with xanthine oxidase and evaluation of antioxidant activity as a therapeutic potential. Natural Product Research. 2018;33(18):2689–2693. https://doi.org/10.1080/14786419.2018.1460831
  50. Duan X-J, Zhang W-W, Li X-M, Wang B-G. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry. 2006;95(1):37–43. https://doi.org/10.1016/j.foodchem.2004.12.015
  51. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? British Journal of Pharmacology. 2004;142(2):231–225. https://doi.org/10.1038/sj.bjp.0705776
  52. Middleton E, Kandaswami C. Effect of flavonoids on immune and inflammatory cell function. Biochemical Pharmacology. 1992;43(6):1167–1179. https://doi.org/10.1016/0006-2952(92)90489-6
  53. Read MA. Flavonoids: Naturally occurring anti-inflammatory agents. American Journal Of Pathology. 1995;147(2):235–237.
  54. Halliwell B, Rafter J, Jenner A. Health promotion by flavonoids, tocopherols, tocotrienols and other phenols: Direct or indirect effects? Antioxidants or not? The American Journal of Clinical Nutrition. 2005;81(1):268S–276S. https://doi.org/10.1093/ajcn/81.1.268S
  55. Oweyele VB, Oloriegbe YY, Balaogun EA, Soladoye AO. Analgesis and anti-inflammatory properties of Nelsonia Canescens leaf extract. Journal of Ethnopharmacology. 2005;99(1):153–156. https://doi.org/10.1016/j.jep.2005.02.003
  56. Metowogo K, Agbonon A, Eklu-Gadegbeku K, Aklikokou AK, Gbeassor M. Anti-ulcer and anti-inflammtory effects of Hydro-alcohol extract of Aloe buettneri A. Berger (Lilliaceae). Tropical Journal of Pharmaceutical Research. 2008;7(1):907–912. https://doi.org/10.4314/tjpr.v7i1.14676
  57. Peyvast G, Khorsandi Z. Antibacterial activity of broad bean extracts on resistance bacteria. Pakistan Journal of Biological Sciences. 2007;10(3):398–402. https://doi.org/10.3923/pjbs.2007.398.402
  58. Villanueva A. Hepatocellular carcinoma. The New England Journal of Medicine. 2019;380(15):1450–1462. https://doi.org/10.1056/NEJMra1713263
  59. Yang R, Chen H, Gu Z. Factors influencing diamine oxidase activity and γ-aminobutyric acid content of fava bean (Vicia faba L.) during germination. Journal of Agricultural and Food Chemistry. 2011;59(21):11616–11620. https://doi.org/10.1021/jf202645p
  60. Mohamed AA, Elbedewy TA, El-Serafy M, El-Toukhy N, Ahmed W, Ali El Din Z. Hepatitis C virus: A global view. World Journal of Hepatology. 2015;7(26):2676–2680. https://doi.org/10.4254/wjh.v7.i26.2676
  61. L’Hocine L, Martineau-Côté D, Achouri A, Wanasundara JPD, Loku Hetti Arachchige GW. Broad bean (faba bean). In: Manickavasagan A, Thirunathan P, editors. Pulses: Processing and product development. Cham: Springer; 2020. pp. 27–54. https://doi.org/10.1007/978-3-030-41376-7_3
  62. Batra P, Sharma AK. Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech. 2013;3:439–459. https://doi.org/10.1007/s13205-013-0117-5
  63. Perez-Jimenez J, Neveu V, Vos F, Scalbert A. Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. European Journal of Clinical Nutrition. 2010;64:S112–S120. https://doi.org/10.1038/ejcn.2010.221
  64. Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines. 2015;2(3):251–286. https://doi.org/10.3390/medicines2030251
  65. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity. 2009;2(5):270–278. https://doi.org/10.4161/oxim.2.5.9498
  66. Anantharaju PG, Gowda PC, Vimalambike MG, Madhunapantula SV. An overview on the role of dietary phenolics for the treatment of cancers. Nutrition Journal. 2016;15. https://doi.org/10.1186/s12937-016-0217-2
  67. Ceramella J, la Torre C, de Luca M, Iacopetta D, Fazio A, Catalano A, et al. Exploring the anticancer and antioxidant properties of Vicia faba L. pods extracts, a promising source of nutraceuticals. PeerJ. 2022;10. https://doi.org/10.7717/peerj.13683
  68. Ghiringhelli F, Rebe C, Hichami A, Delmas D. Immunomodulation and anti-inflammatory roles of polyphenols as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry. 2012;12(8):852–873. https://doi.org/10.2174/187152012802650048
  69. Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10(11). https://doi.org/10.3390/nu101116
Как цитировать?
Elbadrawy E, Mostafa MY. Antioxidant, anti-inflammatory, antimicrobial, and anticancer properties of green broad bean pods (Vicia faba L.). Foods and Raw Materials. 2024;12(2):308–318. https://doi.org/10.21603/2308-4057-2024-2-610 
О журнале