ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Yeast-rich mannan fractions in duck cultivation: prospects of using

Аннотация
Introduction. Due to the trend of avoiding antibiotics and acquiring eco-friendly products, the use of environmentally safe preparations is becoming increasingly relevant in poultry farming. Study objects and methods. We used Salmonella enteritidis and Campylobacter jejuni isolated from poultry carcasses. At the first in vitro stage, we studied the ability of mannan oligosaccharides, isolated from the cell walls of Saccharomyces cerevisiae yeast, to adsorb bacterial pathogens. At the second stage, we studied the influence of fraction on the activity, colonization and microflora composition of ducklings’ intestines. At the third stage, we determined the antagonistic activity of Bifidobacterium spp. (Bifidobacterium lactis, Bifidobacterium longum, Bifidobacterium bifidum) and Lactobacillus spp. (Lactobacillus fermentun, Lactobacillus salivarius, Lactobacillus acidophilus) against Salmonella enteritidis and Campylobacter jejuni isolates. The experiment was conducted on the ducklings of Star 53 H.Y. cross. Their diet was supplemented with probiotics, prebiotics, and their combination. Results and discussion. In vitro studies showed the ability of mannan oligosaccharides isolated from the cell walls of Saccharomyces cerevisiae yeast to adsorb Salmonella enteritidis and Campylobacter jejun. In vivo experiment showed the ability of mannan oligosaccharides to prevent colonization of poultry intestines by bacterial pathogens with type I fimbriae. Conclusion. The reisolation rate of ducks infected with Salmonella enteritidis was 53.6% lower, and those infected with Campylobacter jejuni, 66.2% lower than the control. Mannan oligosaccharides added to the diet did not affect the concentration of lactobacilli, enterococci, and anaerobic bacteria in the ducks’ intestines. A combined use of Bifidobacterium spp. and mannan oligosaccharides improved the preservation of poultry stock by 8.7%, which made it an effective way to prevent poultry salmonellosis.
Ключевые слова
Prebiotics , probiotics , mannan oligosaccharides , microorganisms , bacterial pathogens , Salmonella spp. , Campylobacter spp. , poultry , ducks , productivity
СПИСОК ЛИТЕРАТУРЫ
  1. Kittler S, Fischer S, Abdulmawjood A, Glunder G, Klein G. Colonisation of a phage susceptible Campylobacter jejuni population in two phage positive broiler flocks. PLoS One. 2014;9(4). DOI: https://doi.org/10.1371/journal.pone.0094782.
  2. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks breaks in 2015. EFSA Journal. 2016;14(12). DOI: https://doi.org/10.2903/j.efsa.2016.4634.
  3. Kasyanenko OI, Fotina TI, Fotina AA, Gladchenko SM, Gnidenko TY, Bezruk RV. Properties of Sampylobacter jejunі that were isolated from poultry products. Microbiological Journal. 2017;79(4):66–74. (In Russ.).
  4. Umaraw P, Prajapati A, Verma AK, Pathak V, Singh VP. Control of campylobacter in poultry industry from farm to poultry processing unit: A review. Critical Reviews in Food Science and Nutrition. 2017;57(4):659–665.
  5. Collard JM, Bertrand S, Dierick K, Godard C, Wildemauwe C, Vermeersch K, et al. Drastic decrease of Salmonella Enteritidis isolated from humans in Belgium in 2005, shift in phage types and influence on foodborne outbreaks. Epidemiology and Infection. 2008;136(6):771–781. DOI: https://doi.org/10.1017/s095026880700920x.
  6. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA Journal. 2015;13(12). DOI: https://doi.org/10.2903/j.efsa.2015.4329.
  7. Meunier M, Guyard-Nicodeme M, Dory D, Chemaly M. Control strategies against Campylobacter at the poultry production level: biosecurity measures, feed additives and vaccination. Journal of Applied Microbiology. 2016;120(5):1139–1173. DOI: https://doi.org/10.1111/jam.12986.
  8. Skarp CPA, Hanninen ML, Rautelini HIK. Campylobacteriosis: the role of poultry meat. Clinical Microbiology and Infection. 2016;22(2):103–109. DOI: https://doi.org/10.1016/j.cmi.2015.11.019.
  9. Dogan ANC, Celik E, Kilicle PA, Atalay E, Saglam AG, Dogan A, et al. Antibacterial effect of hot peppers (Capsicum annuum, Capsicum annuum var globriusculum, Capsicum frutescens) on some Arcobacter, Campylobacter and Helicobacter species. Pakistan Veterinary Journal. 2018;38(3):266–270. DOI: https://doi.org/10.29261/pakvetj/2018.057.
  10. Spring P, Wenk C, Connolly A, Kiers A. A review of 733 published trials on Bio-Mos®, a mannan oligosaccharide, and Actigen®, a second generation mannose rich fraction, on farm and companion animals. Journal of Applied Animal Nutrition. 2015;3. DOI: https://doi.org/10.1017/jan.2015.6.
  11. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA Journal. 2017;15(12). DOI: https://doi.org/10.2903/j.efsa.2017.5077.
  12. Ansari F, Pourjafar H, Bokaie S, Peighambari SM, Mahmoudi M, Fallah MH, et al. Association between poultry density and Salmonella infection in commercial laying flocks in Iran using a Kernel density. Pakistan Veterinary Journal. 2017;37(3):299–304.
  13. Gormley FJ, Bailey RA, Watson KA, McAdam J, Avendaño S, Stanley WA, et al. Campylobacter colonisation and proliferation in the broiler chicken under natural field challenge is not affected by bird growth rate or breed. Applied and Environmental Microbiology. 2014;80(21):6733–6738. DOI: https://doi.org/10.1128/AEM.02162-14.
  14. Ao Z, Choct M. Oligosaccharides affect performance and gut development of broiler chickens. Asian-Australasian Journal of Animal Sciences. 2013;26(1):116–121. DOI: https://doi.org/10.5713/ajas.2012.12414.
  15. Ramirez-Hernandez A, Rupnow J, Hutkins RW. Adherence reduction of Campylobacter jejuni and Campylobacter coli strains to HEp-2 Cells by mannan oligosaccharides and a high-molecular-weight component of cranberry extract. Journal of Food Protection. 2015;78(8):1496–1505. DOI: https://doi.org/10.4315/0362-028X.JFP-15-087.
  16. Muller KH, Collinson SK, Trust TJ, Kay WW. Type-1 fimbriae of Salmonella-Enteritidis. Journal of Bacteriology. 1991;173(15):4765–4772.
  17. Lea H, Spring P, Taylor-Pickard J, Burton E. Natural carbohydrate fraction Actigen™ from Saccharomyces cerevisiae cell wall: effects on goblet cells, gut morphology and performance of broiler chickens. Journal of Applied Animal Nutrition. 2012;1. DOI: https://doi.org/10.1017/jan.2013.6.
  18. Rous P, Turner JR. The preservation of living red blood cells in vitro: I. Methods of preservation. Journal of Experimental Medicine. 2016;23(2):219–237. DOI: https://doi.org/10.1084/jem.23.2.219.
  19. Corrigan A, de Leeuw M, Penaud-Frezet S, Dimova D, Murphy RA. Phylogenetic and functional alterations in bacterial community compositions in broiler ceca as a result of mannan oligosaccharide supplementation. Applied and Environmental Microbiology. 2015;81(10):3460–3470. DOI: https://doi.org/10.1128/aem.04194-14.
  20. Arsi K, Donoghue AM, Woo-Ming A, Blore PJ, Donoghue DJ. The efficacy of selected probiotic and prebiotic combinations in reducing Campylobacter colonization in broiler chickens. Journal of Applied Poultry Research. 2015;24(3):327–334. DOI: https://doi.org/10.3382/japr/pfv032.
  21. Hadadji M, Benama R, Saidi N, Henni DE, Kihal M. Identification of cultivable Bifidobacterium species isolated from breast-fed infants feces in West-Algeria. African Journal of Biotechnology. 2005;4(5):422–430.
  22. Spring P, Wenk C, Dawson KA, Newman KE. The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poultry Science. 2000;79(2):205–211. DOI: https://doi.org/10.1093/ps/79.2.205.
  23. Pitkanen T. Review of Campylobacter spp. in drinking and environmental waters. Journal of Microbiological Methods. 2013;95(1):39–47. DOI: https://doi.org/10.1016/j.mimet.2013.06.008.
  24. Ugarte-Ruiz M, Florez-Cuadrado D, Wassenaar TM, Porrero MC, Dominguez L. Method comparison for enhanced recovery, isolation and qualitative detection of C. jejuni and C. coli from wastewater effluent samples. International Journal of Environmental Research and Public Health. 2015;12(3):2749–2764. DOI: https://doi.org/10.3390/ijerph120302749.
  25. Sujatha K, Dhanalakshmi K, Rao AS. Antigenic characterisation and antibiotic sensitivity of field isolates of Salmonella gallinarum. Indian Veterinary Journal. 2003;80(10):965–968.
  26. Mannan SJ, Rezwan R, Rahman MS, Begum K. Isolation and biochemical characterization of Lactobacillus species from yogurt and cheese samples in Dhaka metropolitan area. Bangladesh Pharmaceutical Journal. 2017;20(1):27–33.
  27. Zinedine A, Faid M. Isolation and characterization of strains of bifidobacteria with probiotic proprieties in vitro. World Journal of Dairy and Food Sciences. 2007;(1):28–34.
  28. Achtman M, Wain J, Weill FX, Nair S, Zhou ZM, Sangal V, et al. Multilocus Sequence Typing as a Replacement for Serotyping in Salmonella enterica. PLoS Pathogens. 2012;8(6). DOI: https://doi.org/10.1371/journal.ppat.1002776.
  29. Baurhoo B, Ferket PR, Zhao X. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poultry Science. 2009;88(11):2262–2272. DOI: https://doi.org/10.3382/ps.2008-00562.
  30. Rakibul Hasan AKM, Ali MH, Siddique MP, Rahman MM, Islam MA. Slinical and laboratory diagnoses of common bacterial diseases of broiler and layer chickens. Bangladesh Journal of Veterinary Medicine. 2010;8(2):107–115. DOI: https://doi.org/10.3329/bjvm.v8i2.11188.
  31. Srinivasan P, Balasubramaniam GA, Murthy T, Saravanan S, Balachandran P. Prevalence and pathology of Salmonellosis in commercial layer chicken from Namakkal, India. Pakistan Veterinary Journal. 2014;34(3):324–328.
  32. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA Journal. 2018;16(12). DOI: https://doi.org/10.2903/j.efsa.2018.5500.
  33. Safaei HG, Jalali M, Hosseini A, Narimani T, Sharifzadeh A, Raheimi E. The prevalence of bacterial contamination of table eggs from retails markets by Salmonella spp., Listeria monocytogenes, Campylobacter jejuni and Escherichia coli in Shahrekord, Iran. Jundishapur Journal of Microbiology. 2011;4(4):249–253.
  34. Jamshidi A, Kalidari GA, Hedayati M. Isolation and identification of Salmonella Enteritidis and Salmonella Typhimurium from the eggs of retail stores in Mashhad, Iran using conventional culture method and multiplex PCR assay. Journal of Food Safety. 2010;30(3):558–568. DOI: https://doi.org/10.1111/j.1745-4565.2010.00225.x.
  35. Khoult D, Krig N, Snit P. Opredelitelʹ bakteriy Berdzhi. Tom 1 [Bergey`s Manual of Determinative Bacteriology. Vol. 1]. Moscow: Mir; 1997. 432 p. (In Russ.).
Как цитировать?
Yeast-rich mannan fractions in duck cultivation: prospects of using. Foods and Raw Materials, 2020, vol. 8, no. 2, pp. 337-347
DOI
http://doi.org/10.21603/2308-4057-2020-2-337-347
Издатель
Кемеровский государственный университет
htpps://kemsu.ru
ISSN
2308-4057 (Print) /
2310-9599 (Online)
О журнале