ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Fungal microbiome of barley grain revealed by NGS and mycological analysis

Аннотация
Introduction. Barley can be infected with a broad variety of fungi, which can cause considerable loss of crop yield and reduce the quality of grain. Modern vision on the geographical and ecological distribution and biodiversity of micromycetes has been established by traditional, cultivation-based methods. However, more recently, molecular methods have shifted microbiological research to a new level, making it possible to investigate hidden taxonomical biodiversity. Study objects and methods. For this study, we determined the fungal biome on the surface and inside of barley grains using the traditional mycological method and the contemporary molecular method, which employed DNA metabarcoding based on NGS (nextgeneration sequencing) of the ITS2 region. We analyzed five cultivars that were collected in two subsequent crop seasons (2014, 2015). Results and discussion. DNA metabarcoding revealed 43 operational taxonomic units, while 17 taxa of genus or species level were recovered by the traditional method. DNA metabarcoding revealed several minor species and one predominant, presumably plantpathogenic Phaeosphaeria sp., which were not detected in the agar plate-based assay. Traditionally, Fusarium fungi were identified by mycological assay. However, the resolution of DNA metabarcoding was sufficient to determine main Fusarium groups divided by ability to produce toxic secondary metabolites. The combined list of Ascomycetes consisted of 15 genera, including 14 fungi identified to species level. The list of Basidiomycota derived from DNA metabarcoding data alone included 8 genera. Conclusion. It was found that crop season predetermines the fungal community structure; mycobiota on the surface and inside of grain was significantly different.
Ключевые слова
Barley , seed-borne fungi , infection , next-generation sequencing , rDNA , Alternaria , Fusarium
ФИНАНСИРОВАНИЕ
This work was supported financially by the Russian Science Foundation (RSF) (№ 19-76-30005).
СПИСОК ЛИТЕРАТУРЫ
  1. Food and Agriculture Organization of the United Nations [Internet]. [cited 2018 Oct 15]. Available from: http://faostat3.fao.org.
  2. Arendt E, Zannini E. Cereal grains for the food and beverage industries. Cambridge: Woodhead Publishing; 2013. 512 p. DOI: https://doi.org/10.1533/9780857098924.
  3. Chen W, Turkington TK, Levesque CA, Bamforth JM, Patrick SK, Lewis CT, et al. Geography and agronomical practices drive diversification of the epiphytic mycoflora associated with barley and its malt end product in western Canada. Agriculture Ecosystems and Environment. 2016;226:43–55. DOI: https://doi.org/10.1016/j.agee.2016.03.030.
  4. Flannigan B. The microbiota of barley and malt. In: Priest FG, Campbell I, editors. Brewing microbiology. Boston: Springer; 2003. pp. 113–180. DOI: https://doi.org/10.1007/978-1-4419-9250-5_4.
  5. Buee M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, et al. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist. 2009;184(2):449–456. DOI: https://doi.org/10.1111/j.1469-8137.2009.03003.x.
  6. Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, et al. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Applied and Environmental Microbiology. 2007;73(21):7059–7066. DOI: https://doi.org/10.1128/AEM.00358-07.
  7. Jumpponen A. Soil fungal communities underneath willow canopies on a primary successional glacier forefront: rDNA sequence results can be affected by primer selection and chimeric data. Microbial Ecology. 2007;53(2):233–246. DOI: https://doi.org/10.1007/s00248-004-0006-x.
  8. Kuramae EE, Verbruggen E, Hillekens R, de Hollander M, Roling WFM, van der Heijden MGA, et al. Tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing. PLoS ONE. 2013;8(7). DOI: https://doi.org/10.1371/journal.pone.0069973.
  9. Links MG, Demeke T, Grafenhan T, Hill JE, Hemmingsen SM, Dumonceaux TJ. Simultaneous profiling of seedassociated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds. New Phytologist. 2014;202(2):542–553. DOI: https://doi.org/10.1111/nph.12693.
  10. Yildirim EA, Laptev GYu, Il’ina LA, Nikonov IN, Filippovav VA, Soldatova VV, et al. The investigation of endophytic microorganisms as a source for silage microbiocenosis formation using NGS-sequencing. Agricultural Biology. 2015;50(6):832–838. DOI: https://doi.org/10.15389/agrobiology.2015.6.832eng.
  11. Igiehon NO, Babalola OO. Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Applied Microbiology and Biotechnology. 2017;101(12):4871–4881. DOI: https://doi.org/10.1007/s00253-017-8344-z.
  12. Galazka A, Grzadziel J. Fungal genetics and functional diversity of microbial communities in the soil under long-term monoculture of maize using different cultivation techniques. Frontiers in Microbiology. 2018;9. DOI: https://doi.org/10.3389/fmicb.2018.00076.
  13. Mancini V, Murolo S, Romanazzi G. Diagnostic methods for detecting fungal pathogens on vegetable seeds. Plant Pathology. 2016;65(5):691–703. DOI: https://doi.org/10.1111/ppa.12515.
  14. Nicolaisen M, Justesen AF, Knorr K, Wang J, Pinnschmidt HO. Fungal communities in wheat grain show significant co-existence patterns among species. Fungal Ecology. 2014;11:145–153. DOI: https://doi.org/10.1016/j.funeco.2014.06.002.
  15. Bazzicalupo AL, Balint M, Schmitt I. Comparison of ITS1 and ITS2 rDNA in 454 sequencing of hyperdiverse fungal communities. Fungal Ecology. 2013;6(1):102–109. DOI: https://doi.org/10.1016/j.funeco.2012.09.003.
  16. Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H. ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources. 2013;13(2):218–224. DOI: https://doi.org/10.1111/1755-0998.12065.
  17. Mello A, Napoli C, Murat C, Morin E, Marceddu G, Bonfante P. ITS-1 versus ITS-2 pyrosequencing: a comparison of fungal populations in truffle grounds. Mycologia. 2011;103(6):1184–1193. DOI: https://doi.org/10.3852/11-027.
  18. Martin KJ, Rygiewicz PT. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiology. 2005;5. DOI: https://doi.org/10.1186/1471-2180-5-28.
  19. Kostovcik M, Bateman CC, Kolarik M, Stelinski LL, Jordal BH, Hulcr J. The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME Journal. 2015;9(1):126–138. DOI: https://doi.org/10.1038/ismej.2014.115.
  20. Nilsson RH, Ryberg M, Abarenkov K, Sjokvist E, Kristiansson E. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters. 2009;296(1):97–101. DOI: https://doi.org/10.1111/j.1574-6968.2009.01618.x.
  21. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology. 1993;2(2):113–118. DOI: https://doi.org/10.1111/j.1365-294X.1993.tb00005.x.
  22. Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology. 2010;10. DOI: https://doi.org/10.1186/1471-2180-10-189.
  23. De Beeck MO, Lievens B, Busschaert P, Declerck S, Vangronsveld J, Colpaert JV. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS ONE. 2014;9(6). DOI: https://doi.org/10.1371/journal.pone.0097629.
  24. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. Orlando: Academic Press; 1990. pp. 315–322. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1.
  25. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–380. DOI: https://doi.org/10.1038/nature03959.
  26. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 2010;7(5):335–336. DOI: https://doi.org/10.1038/nmeth.f.303.
  27. Reeder J, Knight R. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nature Methods. 2010;7(9):668–669. DOI: https://doi.org/10.1038/nmeth0910-668b.
  28. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):2194–2200. DOI: https://doi.org/10.1093/bioinformatics/btr381.
  29. Abarenkov K, Nilsson RH, Larsson KH, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytologist. 2010;186(2):281–285. DOI: https://doi.org/10.1111/j.1469-8137.2009.03160.x.
  30. Koljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist. 2005;166(3):1063–1068. DOI: https://doi.org/10.1111/j.1469-8137.2005.01376.x.
  31. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–2461. DOI: https://doi.org/10.1093/bioinformatics/btq461.
  32. Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjoller R, et al. Fungal community analysis by highthroughput sequencing of amplified markers – a user’s guide. New Phytologist. 2013;199(1):288–299. DOI: https://doi.org/10.1111/nph.12243.
  33. Leinonen R, Sugawara H, Shumway M. The sequence read archive. Nucleic Acids Research. 2011;39:D19–D21. DOI: https://doi.org/10.1093/nar/gkq1019.
  34. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology. 1990;215(3):403–410. DOI: https://doi.org/10.1016/S0022-2836(05)80360-2.
  35. Genbank [Internet]. [cited 2018 Oct 15]. Available from: https://www.ncbi.nlm.nih.gov/genbank.
  36. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology. 2007;73(16):5261–5267. DOI: https://doi.org/10.1128/AEM.00062-07.
  37. Unite community [Internet]. [cited 2018 Oct 15]. Available from: https://unite.ut.ee.
  38. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research. 2002;30(14):3059–3066. DOI: https://doi.org/10.1093/nar/gkf436.
  39. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution. 2011;28(10):2731–2739. DOI: https://doi.org/10.1093/molbev/msr121.
  40. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution. 2013;30(12):2725–2729. DOI: https://doi.org/10.1093/molbev/mst197.
  41. Tamura K, Nei M. estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees. Molecular Biology and Evolution. 1993;10(3):512–526.
  42. The R project for statistical computing [Internet]. [cited 2018 Oct 15]. Available from: http://www.R-project.org/.
  43. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology. 2005;71(12):8228–8235. DOI: https://doi.org/10.1128/AEM.71.12.8228-8235.2005.
  44. Ellis MB. Dematiaceous hyphomycetes. Surrey: CMI, Kew; 1971. 608 p.
  45. Gerlach W, Nirenberg H. The genus Fusarium – a pictorial atlas. Mitteilungen der Biologischen Bundesanstalt für Land – und Forstwirtschaft. 1982;209:1–406.
  46. Lawrence DP, Rotondo F, Gannibal PB. Biodiversity and taxonomy of the pleomorphic genus Alternaria. Mycological Progress. 2016;15(1). DOI: https://doi.org/10.1007/s11557-015-1144-x.
  47. Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O. Introduction to Food- and Airborne Fungi. Utrecht: Centraalbureau voor Schimmelcultures; 2002. 389 p.
  48. Lawrence DP, Gannibal PB, Peever TL, Pryor BM. The sections of Alternaria: formalizing species-group concepts. Mycologia. 2013;105(3):530–546. DOI: https://doi.org/10.3852/12-249.
  49. Watanabe M, Yonezawa T, Lee K, Kumagai S, Sugita-Konishi Y, Goto K, et al. Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC Evolutionary Biology. 2011;11. DOI: https://doi.org/10.1186/1471-2148-11-322.
  50. Thrane U. Developments in the taxonomy of Fusarium species based on secondary metabolites. In: Summerell BA, editor. Fusarium: Paul E. Nelson memorial symposium. St. Paul: APS Press; 2001. pp. 29–49.
  51. Yli-Mattila T, Gagkaeva TYu. Fusarium toxins in cereals in Northern Europe and Asia. In: Deshmukh SK, Misra JK, Tewari JP, Papp T, editors. Fungi: applications and management strategies. Boca Raton: CRC Press; 2016. pp. 293–317.
  52. Jestoi M. Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin – A review. Critical Reviews in Food Science and Nutrition. 2008;48(1):21–49. DOI: https://doi.org/10.1080/10408390601062021.
  53. Gannibal PB. Distribution of Alternaria species among sections. 2. Section Alternaria. Mycotaxon. 2015;130(4):941–949. DOI: https://doi.org/10.5248/130.941.
  54. Woudenberg JHC, Seidl MF, Groenewald JZ, de Vries M, Stielow JB, Thomma B, et al. Alternaria section Alternaria: Species, formae speciales or pathotypes? Studies in Mycology. 2015(82):1–21. DOI: https://doi.org/10.1016/j.simyco.2015.07.001.
  55. Andersen B, Sorensen JL, Nielsen KF, van den Ende BG, de Hoog S. A polyphasic approach to the taxonomy of the Alternaria infectoria species-group. Fungal Genetics and Biology. 2009;46(9):642–656. DOI: https://doi.org/10.1016/j.fgb.2009.05.005.
  56. Gannibal PB, Lawrence DP. Distribution of Alternaria species among sections. 3. Sections Infectoriae and Pseudoalternaria. Mycotaxon. 2016;131(4):781–790. DOI: https://doi.org/10.5248/131.781.
  57. Karlsson I, Edel-Hermann V, Gautheron N, Durling MB, Kolseth AK, Steinberg C, et al. Genus-specific primers for study of Fusarium communities in field samples. Applied and Environmental Microbiology. 2016;82(2):491–501. DOI: https://doi.org/10.1128/AEM.02748-15.
  58. Leslie JF, Summerell BA. The Fusarium laboratory manual. Oxford: Blackwell Publishing; 2006. 388 p.
  59. Gagkaeva TYu, Gavrilova OP, Levitin MM, Novozhilov KV. Fuzarioz zernovykh kulʹtur [The fusariosis of cereal crops]. Zashchita i karantin rasteniy [Plant protection and quarantine]. 2011;(5):69–120. (In Russ.).
  60. Gavrilova OP, Gagkaeva TYu, Burkin AA, Kononenko GP. Mycological infection by Fusarium strains and mycotoxins contamination of oats and barley in the north of nonchernozem’e. Agricultural biology. 2009;44(6):89–93. (In Russ.).
  61. Quaedvlieg W, Verkley GJM, Shin HD, Barreto RW, Alfenas AC, Swart WJ, et al. Sizing up Septoria. Studies in Mycology. 2013(75):307–390. DOI: https://doi.org/10.3114/sim0017.
  62. Crous PW, Shivas RG, Quaedvlieg W, van der Bank M, Zhang Y, Summerell BA, et al. Fungal Planet description sheets: 214–280. Persoonia. 2014;32:184–306. DOI: https://doi.org/10.3767/003158514X682395.
Как цитировать?
Fungal microbiome of barley grain revealed by NGS and mycological analysis. Foods and Raw Materials, 2020, vol. 8, no. 2, pp. 286-297
DOI
http://doi.org/10.21603/2308-4057-2020-2-216-222
Издатель
Кемеровский государственный университет
htpps://kemsu.ru
ISSN
2308-4057 (Print) /
2310-9599 (Online)
О журнале