ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

DNA authentication of brewery products: basic principles and methodological approaches

Аннотация
Beer DNA authentication is the process of authentication by identification of barley malt Hordeum vulgare or its substitutes, as well as hops and yeast. The method is based on molecular genetic analysis of residual quantities of nucleic acids extracted from the cellular debris of the final product. The aim of the study was to analyse scientific and methodical approaches to extraction of residual quantities of beer raw materials nucleic acids and beer DNA authentication for their later application in determining brewing products authenticity. The technological level discloses the method of DNA extraction from wines, modified for extraction of nucleic acids from beer samples. The method includes the following characteristic peculiarities: stage enzymatic hydrolysis of polysaccharides and polypeptides of dissolved lyophilisate, multiple sedimentation and resursuspension of nucleoproteid complex, RNA removal followed by DNA extraction by organic solvents, and additional DNA purification by magnetic particle adsorption. This review presents the analysis of genetic targets used as molecular markers for gene identification of malting barley varieties and beer DNA authentication. We also provided the interpretation of PCR analysis of Hordeum vulgare varieties and samples of commercial beer. Data on SSR- and SNP-markers of Hordeum vulgare nuclear DNA, used for barley varieties identification and potentially suitable for beer DNA authentication, are also presented. We also analysed genetic targets used in malting barley substitute detection, as well as hops and yeast identification in beer. Data on correlation of amplified DNA targets with beer quality indicators were systematised.
Ключевые слова
Alcoholic beverages , malting barley , Hordeum vulgare , DNA , authentication , identification , marker , PCR
СПИСОК ЛИТЕРАТУРЫ
  1. Oganesyants LA, Khurshudyan SA, Galstyan AG. Monitoring kachestva pishchevykh produktov – bazovyy ehlement strategii [Food quality monitoring is a strategy key part]. Production Quality Control. 2018;(4):56–59. (In Russ.).
  2. Lachenmeier DW. Advances in the detection of the adulteration of alcoholic beverages including unrecorded alcohol. In: Downey G, editor. Advances in Food Authenticity Testing. Amsterdam: Woodhead Publishing; 2016. pp. 565–584. DOI: https://doi.org/10.1016/B978-0-08-100220-9.00021-7.
  3. Nakamura S, Tsushima R, Ohtsubo K. A Novel Method for the Preparation of Template DNA for PCR from Beer to Detect Materials and to Develop DNA Markers to Evaluate the Quality of Beer. Bioscience Biotechnology and Biochemistry. 2013;77(4):820–831. DOI: https://doi.org/10.1271/bbb.120969.
  4. Kuballa T, Brunner TS, Thongpanchang T, Walch SG, Lachenmeier DW. Application of NMR for authentication of honey, beer and spices. Current Opinion in Food Science. 2018;19:57–62. DOI: https://doi.org/10.1016/j.cofs.2018.01.007.
  5. Nakamura S, Haraguchi K, Mitani N, Ohtsubo K. Novel Preparation Method of Template DNAs from Eine for PCR To Differentiate Grape (Vitis vinifera L.) Cultivar. Journal of Agricultural and Food Chemistry. 2007;55(25):10388–10395. DOI:https://doi.org/10.1021/jf072407u.
  6. Ohtsubo K, Suzuki K, Haraguchi K, Nakamura S. Novel method for preparation of the template DNA and selection of primers to differentiate the material rice cultivars of rice wine by PCR. Journal of Biochemical and Biophysical Methods. 2008;70(6):1020–1028. DOI: https://doi.org/10.1016/j.jbbm.2007.07.001.
  7. Kim CS, Lee CH, Shin JS, Chung YS, Hyung NI. A simple and Rapid Method for Isolation of High Quality Genomic DNA from Fruit Trees and Conifers Using PVP. Nucleic Acids Research. 1997;25(5):1085–1086. DOI: https://doi.org/10.1093/nar/25.5.1085.
  8. Koonjul PK, Brandt WF, Farrant JM, Lindsey GG. Inclusion of polyvinylpyrrolidone in the polymerase chain reaction reverses the inhibitory effects of polyphenolic contamination of RNA. Nucleic Acids Research. 1999;27(3):915–916. DOI: https://doi.org/10.1093/nar/27.3.915.
  9. Juvonen R, Haikara A. Amplification Facilitators and Pre-Processing Methods for PCR Detection of Strictly Anaerobic Beer-Spoilage Bacteria of the Class Clostridia in Brewery Samples. Journal of the Institute of Brewing. 2009;115(3):167–176. DOI: https://doi.org/10.1002/j.2050-0416.2009.tb00365.x.
  10. Catalano V, Moreno-Sanz P, Lorenzi S, Grando MS. Experimental Review of DNA-Based Methods for Wine Traceability and Development of a Single-Nucleotide Polymorphism (SNP) Genotyping Assay for Quantitative Varietal Authentication. Journal of Agricultural and Food Chemistry. 2016;64(37):6969–6984. DOI: https://doi.org/10.1021/acs.jafc.6b02560.
  11. Pulido A, Bakos F, Devic M, Barnabas B, Olmedilla A. HvPG1 and ECA1: two genes activated transcriptionally in the transition of barley microspores from the gametophytic to the embryogenic pathway. Plant Cell Reports. 2009;28(4):551–559. DOI: https://doi.org/10.1007/s00299-008-0662-2.
  12. Pomortsev AA, Martynov SP, Lialina EV. Hordein Locus Polymorphism in Near Eastern Local Populations of Cultivated Barley (Hordeum vulgare L.). Genetika. 2008;44(6):815–828. (In Russ.).
  13. Lyalina EV, Boldyrev SV, Pomortsev AA. Current state of the genetic polymorphism in spring barley (Hordeum vulgare L.) from Russia assessed by the alleles of hordein-coding loci. Genetika. 2016;52(6):650–663. (In Russ.).
  14. Yamaguchi O, Baba T, Furusho M. Relationship between genotype of hordein and malting quality in Japanese barley. Breeding Science. 1998;48(3):309–314.
  15. Echart-Almeida C, Cavalli-Molina S. Hordein polypeptide patterns in relation to malting quality in Brazilian barley varieties. Pesquisa Agropecuaria Brasileira. 2001;36(2):211–217. DOI: https://doi.org/10.1590/s0100-204x2001000200001.
  16. Nakamura S, Suzuki K, Haraguchi K, Yoza K, Okunishi T, Matsui T, et al. Identification of domestic glutinous rice cultivars by the PCR method using grains of 18 typical glutinous rice cultivars as sample and development of technology for detection of different kind grain incorporation in glutinous rice processed foodstuffs. Nippon Nogeikagaku Kaishi-Journal of the Japan Society for Bioscience Biotechnology and Agrochemistry. 2004;78(10):984–993. DOI: https://doi.org/10.1271/nogeikagaku1924.78.984.
  17. Brandt A, Montembault A, Cameronmills V, Rasmussen SK. Primary structure of A B1 hordein gene from barley. Carlsberg Research Communications. 1985;50(6):333–345. DOI: https://doi.org/10.1007/bf02907156.
  18. Washington JM, Box A, Barr AR. Developing waxy barley cultivars for food, feed and malt. International Symposium ‘Barley Genetics’; 2000; Adelaide. Adelaide: The University of Adelaide; 2000. pp. 303–306.
  19. Clarke B, Liang R, Morell MK, Bird AR, Jenkins CLD, Li Z. Gene expression in a starch synthase IIa mutant of barley: changes in the level of gene transcription and grain composition. Functional & Integrative Genomics. 2008;8(3):211–221. DOI: https://doi.org/10.1007/s10142-007-0070-7.
  20. Rohde W, Becker D, Salamini F. Structural-analysis of the waxy locus from Hordeum vulgare. Nucleic Acids Research. 1988;16(14):7185–7186. DOI:https://doi.org/10.1093/nar/16.14.7185.
  21. Nakamura S, Machida K, Ohtsubo K. Search for Cell-Wall-Degrading Enzymes of World-Wide Rice Grains by PCR and Their Effects on the Palatability of Rice. Bioscience Biotechnology and Biochemistry. 2012;76(9):1645–1654. DOI: https://doi.org/10.1271/bbb.120147.
  22. Rasmussen SK, Klausen J, Hejgaard J, Svensson B, Svendsen I. Primary structure of the plant serpin BSZ7 having the capacity of chymotrypsin inhibition. Biochimica Et Biophysica Acta – Protein Structure and Molecular Enzymology. 1996;1297(2):127–130. DOI: https://doi.org/10.1016/s0167-4838(96)00115-x.
  23. Iimure T, Takoi K, Kaneko T, Kihara M, Hayashi K, Ito K, et al. Novel Prediction Method of Beer Foam Stability Using Protein Z, Barley Dimeric α-Amylase Inhibitor-1 (BDAI-1) and Yeast Thioredoxin. Journal of Agricultural and Food Chemistry. 2008;56(18):8664–8671 DOI: https://doi.org/10.1021/jf801184k.
  24. Niu CT, Han YP, Wang JJ, Zheng FY, Liu CF, Li YX, et al. Malt derived proteins: Effect of protein Z on beer foam stability. Food Bioscience. 2018;25:21–27. DOI: https://doi.org/10.1016/j.fbio.2018.07.003.
  25. Iimure T, Kihara M, Ichikawa S, Ito K, Takeda K, Sato K. Development of DNA markers associated with beer foam stability for barley breeding. Theoretical and Applied Genetics. 2011;122(1):199–210. DOI: https://doi.org/10.1007/s00122-010-1436-0.
  26. Knox CA, Sonthayanon B, Chandra GR, Muthukrishnan S. Structure and organization of two divergent α-amylase genes from barley. Plant Molecular Biology. 1987;9(1):3–17. DOI: https://doi.org/10.1007/BF00017982.
  27. Paris M, Jones MGK, Eglinton JK. Genotyping single nucleotide polymorphisms for selection of barley β-amylase alleles. Plant Molecular Biology Reporter. 2002;20(2):149–159. DOI: https://doi.org/10.1007/BF02799430.
  28. Abbott MS, Fedele MJ. A DNA-based varietal identification procedure for hops leaf tissue. Journal of the Institute of Brewing. 1994;100(4):283–285. DOI: https://doi.org/10.1002/j.2050-0416.1994.tb00825.x.
  29. Wei FS, Wing RA, Wise RP. Genome Dynamics and Evolution of the Mla (Powdery Mildew) Resistance Locus in Barley. Plant Cell. 2002;14(8):1903–1917. DOI: https://doi.org/10.1105/tpc.002238.
  30. Hirota N, Kaneko T, Kuroda H, Kaneda H, Takashio M, Ito K, et al. Characterization of lipoxygenase-1 null mutants in barley. Theoretical and Applied Genetics. 2005;111(8):1580–1584. DOI: https://doi.org/10.1007/s00122-005-0088-y.
  31. Hirota N, Kuroda H, Takoi K, Kaneko T, Kaneda H, Yoshida I, et al. Brewing Performance of Malted Lipoxygenase-1 Null Barley and Effect on the Flavor Stability of Beer. Cereal Chemistry. 2006;83(3):250–254. DOI: https://doi.org/10.1094/CC-83-0250.
  32. Yu JH, Huang SX, Dong JJ, Fan W, Huang SL, Liu J, et al. The influence of LOX-less barley malt on the flavour stability of wort and beer. Journal of the Institute of Brewing. 2014;120(2):93–98. DOI: https://doi.org/10.1002/jib.122.
  33. Oozeki M, Sotome T, Haruyama N, Yamaguchi M, Watanabe H, Okiyama T, et al. The two-row malting barley cultivar ‘New Sachiho Golden’ with null lipoxygenase-1 improves flavor stability in beer and was developed by marker assisted selection. Breeding Science. 2017;67(2):165–171. DOI: https://doi.org/10.1270/jsbbs.16104.
  34. Nagamine T, Amagai M, Ikeda TM, Oozeki M, Haruyama N, Kato T, et al. Development and evaluation of DNA markers for Japanese malting barley [Hordeum vulgare] breeding. Bulletin of the Tochigi Prefectural Agricultural Experiment Station (Japan). 2008;59:45–54.
  35. van Mechelen JR, Smits M, Douma AC, Rouster J, Cameronmills V, Heidekamp F, et al. Primary structure of a lipoxygenase from barley-grain as deduced from its CDNA sequence. Biochimica Et Biophysica Acta – Lipids and Lipid Metabolism. 1995;1254(2):221–225. DOI: https://doi.org/10.1016/0005-2760(94)00231-m.
  36. Perovic D, Kopahnke D, Habekuss A, Ordon F, Serflina A. Marker-Based Harnessing of genetic diversity to improve resistance of barley to fungal and viral disease. In: Miedaner T, Korzun V, editors. Applications of Genetic and Genomic Research in Cereals. Woodhead Publishing; 2018. pp. 137–164. DOI: https://doi.org/10.1016/B978-0-08-102163-7.00007-7.
  37. Rodriguez-Palenzuela P, Royo J, Gomez L, Sanchez-Monge R, Salcedo G, Molina-Cano JL, et al. The gene for trypsin-inhibitor CMe is regulated in trans by the lys 3a locus in the endosperm of barley (Hordeum Vulgare L). Molecular & General Genetics. 1989;219(3):474–479. DOI: https://doi.org/10.1007/bf00259622.
  38. Diaz I, Royo J, Oconnor A, Carbonero P. The promoter of the gene Itr1 from barley confers a different tissue-specificity in transgenic tobacco. Molecular and General Genetics. 1995;248(5):592–598. DOI: https://doi.org/10.1007/bf02423455.
  39. Henry RJ, Cowe IA. Factors influencing the hardness (milling energy) and malting quality of barley. Journal of the Institute of Brewing. 1990;96(3):135–136. DOI: https://doi.org/10.1002/j.2050-0416.1990.tb01024.x.
  40. Tonooka T, Aoki E, Yoshioka T, Taketa S. A novel mutant gene for (1-3, 1-4)-β-D-glucanless grain on barley (Hordeum vulgare L.) chromosome 7H. Breeding Science. 2009;59(1):47–54. DOI: https://doi.org/10.1270/jsbbs.59.47.
  41. Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE, Bacic A, et al. The Genetics and Transcriptional Profiles of the Cellulose Synthase-Like Hvcslf Gene Family in Barley. Plant Physiology. 2008;146(4):1821–1833. DOI: https://doi.org/10.1104/pp.107.114694.
  42. Mei L, Ping J, Wang D, Zhang Z, Luo S, Yang M, et al. Malt genotypic screening of polymorphism information content (PIC) of PCR-based marker in barley, based on physiological traits. Molecular Biology. 2012;1(1):101–106. DOI: https://doi.org/10.4172/2168-9547.1000101.
  43. Lakhneko OR, Morgun BV, Kalendar RM, Stepanenko AI, Troianovska AV, Rybalka OI. SSR analysis in the study of genetic diversity and similarity of barley cultivars. Biotechnologia Acta. 2016;9(3):61–68. DOI: https://doi.org/10.15407/biotech9.03.061.
  44. Jo WS, Kim HY, Kim KM. Development and characterization of polymorphic EST based SSR markers in barley (Hordeum vulgare). 3 Biotech. 2017;7. DOI: https://doi.org/10.1007/s13205-017-0899-y.
  45. Tomka M, Urminska D, Canapek M, Galova Z. Potential of selected SSR markers for identification of malting barley genotypes. Journal of Microbiology, Biotechnology and Food Sciences. 2017;6(6):1276–1279. DOI: https://doi.org/10.15414/jmbfs.2017.6.6.1276-1279.
  46. Chiapparino E, Lee D, Donini P. Genotyping single nucleotide polymorphisms in barley by tetra-primer ARMS-PCR. Genome. 2004;47(2):414–420. DOI: https://doi.org/10.1139/g03-130.
  47. Tabone T, Mather DE, Hayden MJ. Temperature Switch PCR (TSP): Robust assay design for reliable amplification and genotyping of SNPs. Bmc Genomics. 2009;10:14. DOI: https://doi.org/10.1186/1471-2164-10-580.
  48. Hayden MJ, Tabone T, Mather DE. Development and assessment of simple PCR markers for SNP genotyping in barley. Theoretical and Applied Genetics. 2009;119(5):939–951. DOI: https://doi.org/10.1007/s00122-009-1101-7.
  49. Ohtsubo K, Nakamura S, Yoza K, Shishido K. Identification of glutinous rice cultivars using rice cake as samples by the PCR method. Journal of the Japanese Society for Food Science and Technology-Nippon Shokuhin Kagaku Kogaku Kaishi. 2001;48(4):306–310.
  50. Tsukada Y, Kitamura K, Harada K, Kaizuma N. Genetic Analysis of Subunits of Two Major Storage Proteins (β-Conglycinin and Glycinin) in Soybean Seeds. Japanese Journal of Breeding. 1986;36(4):390–400. DOI: https://doi.org/10.1270/jsbbs1951.36.390.
  51. Silletti S, Morello L, Gavazzi F, Giani S, Braglia L, Breviario D. Untargeted DNA-based methods for the authentication of wheat species and related cereals in food products. Food Chemistry. 2019;271:410–418. DOI: https://doi.org/10.1016/j.foodchem.2018.07.178.
  52. Kovacevic M, Kac M. Solid-phase microextraction of hops volatiles - Potential use for determination and verification of hops varieties. Journal of Chromatography A. 2001;918(1):159–167. DOI: https://doi.org/10.1016/s0021-9673(01)00719-1.
  53. Naumov GI, Naumova ES, Lantto RA, Louis EJ, Korhola M. Genetic homology between Saccharomyces cerevisiae and its sibling species S. paradoxus and S. bayanus: Electrophoretic karyotypes. Yeast. 1992;8( 8):599–612. DOI: https://doi.org/10.1002/yea.320080804.
  54. Sobel J, Henry L, Rotman N, Rando G. BeerDeCoded: the open beer metagenome project. F1000Res. 2017;6:1676. DOI: https://doi.org/10.12688/f1000research.12564.2.
  55. Batut B, Gravouil K, Defois C, Hiltemann S, Brugere JF, Peyretaillade E, et al. ASaiM: a Galaxy-based framework to analyze microbiota data. Gigascience. 2018;7(6). DOI: https://doi.org/10.1093/gigascience/giy057.
Как цитировать?
DNA authentication of brewery products: basic principles and methodological approaches. Foods and Raw Materials, 2019, vol. 7, no. 2, pp. 364-374
DOI
http://doi.org/10.21603/2308-4057-2019-2-364-374
Издатель
Кемеровский государственный университет
htpps://kemsu.ru
ISSN
2308-4057 (Print) /
2310-9599 (Online)
О журнале