ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Ultrasonic and microwave activation of raspberry extract: antioxidant and anti-carcinogenic properties

Safe and healthy nutrition has a beneficial effect on human well-being. Various foods, such as berries, are known to inhibit cancer-promoting pre-proliferative signals. Among European fruit and berry crops, raspberries demonstrate one with the widest ranges of biologically active substances. Extraction remains a reliable method of obtaining biologically active substances from plant materials. The research objective was to obtain a semi-finished raspberry product by using microwave and ultrasonic processing and to study its antioxidant, anti-carcinogenic, sensory, physico-chemical, and microbiological properties. The raspberry extracts were obtained by maceration, ultrasound treatment, and microwave processing. After that, the samples underwent a comparative analysis of their antioxidant properties. The ultrasonic method gave the best results. A set of experiments made it possible to define the optimal technological modes for the extraction process: ethanol = 50%, ultrasonic radiation = 35 kHz, temperature = 40 ± 5°C, time = 120 min, water ratio = 1:10. A set of experiments on cell cultures demonstrated that the raspberry extract was able to reduce the expression of the anti-inflammatory COX-2, iNOS, and IL-8 genes. Hense, we recommend further studies of the effect of the raspberry extract on the induced expression of COX-2, iNOS, and IL-8. In addition, its anticarcinogenic properties have to be studied in vivo.
Ключевые слова
Extraction of plant materials , phenolic substances , PRC-analysis , expression of anti-inflammatory genes , inhibition , ultrasound , microvaves
  1. Taylor TM. Handbook of Natural Antimicrobials for Food Safety and Quality. USA: Elsevier Science, 2014. 442 p.
  2. Bobinaite R, Viškelis P, Šarkinas A, Venskutonis PR. Phytochemical composition, antioxidant and antimicrobial properties of rasberry fruit, pulp, and marc extracts. CyTA – Journal of Food. 2013;11(4):334–342. DOI:
  3. Wallace CA, Sperber WS, Mortimore SE. Food Safety for the 21st Century: Managing HACCP and Food Safety Throughout the Global Supply Chain. Wiley; 2018. 477 p. DOI:
  4. Kapetanakou AE, Skandamis PN. Applications of active packaging for increasing microbial stability in foods: natural volatile antimicrobial compounds. Current Opinion in Food Science. 2016;12:1–12. DOI:
  5. Boo H-O, Hwang S-J, Bae C-S, Park S-H, Heo B-G, Gorinstein S. Extraction and characterization of some natural plant pigments. Industrial Crops and Products. 2012;40(1):129–135. DOI:
  6. Tian Y, Liimatainen J, Puganen A, Alakomi H-L, Sinkkonen J, Yang B. Sephadex LH-20 fractionation and bioactivities of phenolic compounds from extracts of Finnish berry plants. Food Research International. 2018;113:115–130. DOI:
  7. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer Journal for Clinicians. 2012;62(1):10–29. DOI:
  8. Zanini S, Marzotto M, Giovinazzo F, Bassi C, Bellavite P. Effects of Dietary Components on Cancer of the Digestive System. Critical Reviews in Food Science and Nutrition. 2015;55(13):1870–1885. DOI:
  9. Kushi LH, Doyle C, McCullough M, Rock CL, Demark-Wahnefried W, Bandera EV, et al. American Cancer Society guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer Journal for Clinicians. 2012;62(1):30–67. DOI:
  10. Zhao T-T, Jin F, Li J-G, Xu Y-Y, Dong H-T, Liu Q, et al. Dietary isoflavones or isoflavone-rich food intake and breast cancer risk: A meta-analysis of prospective cohort studies. Clinical Nutrition. 2019;38(1):136–145. DOI:
  11. Teng H, Fang T, Lin Q, Song H, Liu B, Chen L. Red raspberry and its anthocyanins: Bioactivity beyond antioxidant capacity. Trends in Food Science and Technology. 2017;66:153–165. DOI:
  12. Golubtsova YuV. Physical and chemical indicators and merchandasing assessment of wild strawberry, gooseberry, cherry, raspberry, banana, wild rose and kiwi. Foods and Raw Materials. 2017;5(1):154–164. DOI:
  13. Zhidyokhina TV. Industrial assortment of raspberry and its productivity in the black-earth region. The Bulletin of KrasGAU. 2015;109(10):131–135. (In Russ.).
  14. Miret JA, Munné-Bosch S. Abscisic acid and pyrabactin improve vitamin C contents in raspberries. Food Chemistry.2016;203:216–223 DOI:
  15. Zhang L, Li J, Hogan S, Chung H, Welbaum GE, Zhou K. Inhibitory effect of raspberries on starch digestive enzyme and their antioxidant properties and phenolic composition. Food Chemistry. 2015;119:592–599. DOI:
  16. Landele JM. Ellagitannis, ellagicacid and their derived metabolites: A review about source, metabolism, functions and health. Food Research International. 2011;44(5):1150–1160. DOI:
  17. Luchina NA. Technological Properties of Raspberries Grown in the Novosibirsk Region. Food Industry. 2015;(8):22–24. (In Russ.).
  18. Zhbanova EV. Biochemical characterization of fruits from raspberry vor gene pool under the circumstances of the Central Chernozem Zone (Michurinsk). Collection of scientific works SNBG. 2017;144–1:182–186. (In Russ.).
  19. Xiao T, Guo Z, Bi X, Zhao Y. Polyphenolic profile as well as anti-oxidant and anti-diabetes effects of extracts from freeze-dried black raspberries. Journal of Functional Foods. 2017;31:179–187. DOI:
  20. Terletskaya VA, Rubanka EV, Zinchenko IN. Influence of technological factors on the process of black chokebery extraction. Food Processing: Techniques and Technology. 2013;31(4):127–131. (In Russ.).
  21. Polyakov VA, Abramova IM, Zenina GP, Aristarhova TYu, Stekanova GV. Ripple Effect on the Extraction Process in the Preparation of Fruit Drinks Fortified for Distillery. Beer and beverages. 2016;(6):42–45. (In Russ.).
  22. Khramtsov AG, Evdokimov IA, Lodygin AD, Budkevich RO. Technology development for the food industry: a conceptual model. Foods and Raw Materials. 2014;2(1):22–26. DOI:
  23. Meireles MAA. Extracting Bioactive Compounds for Food Products. Theory and Applications. Bova Raton: CRC Press; 2009. 464 p.
  24. Vongsak B, Sithisarn P, Mangmool S, Thongpraditchote S, Wongkrajang Y, Gritsanapan W. Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products. 2013;44:566–571. DOI:
  25. Khoei M, Chekin F. The ultrasound-assisted aqueous extraction of rice bran oil. Food Chemistry. 2016;194:503–507. DOI:
  26. Nipornram S, Tochampa W, Rattanatraiwong P, Singanusong R. Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food Chemistry. 2018;241:338–345. DOI:
  27. Espada-Bellido E, Ferreiro-González M, Carrera C, Palma M, Barroso CG, Barbero GF. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp. Food Chemistry. 2017;219:23–32. DOI:
  28. Markin VI, Cheprasova MIu, Bazarnova NG. Basic directions of use microwave radiation in the processing of plant raw material (review). Chemistry of plant raw material. 2014;(4):21–42. (In Russ.). DOI:
  29. Cai M, Hou W, Lv Y, Sun P. Behavior and rejection mechanisms of fruit juice phenolic compounds in model solution during nanofiltration. Journal of Food Engineering. 2017;195:97–104. DOI:
  30. Demidova AV, Makarova NV. Influence of blanching on the physical and chemical properties and antioxidant activity of fruit raw materials cherries, plums, blank chokeberry, strawberry. Food industry. 2016;(2):40–43. (In Russ.).
  31. Strycova AD, Makarova NV. Frozen Berries – Effective Antioxidant for Whole Year. Food industry. 2013;(3):28–31. (In Russ.).
  32. Karabegovic IT, Stojičević SS, Veličković DT, Todorović ZB, Nikolić NT, Lazić ML. The effect of different extraction techniques on the composition and antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Industrial Crops and Products. 2014;54:142–148. DOI:
  33. Cheigh C-I, Chung E-Y, Chung M-S. Enhanced extraction of flavanones hesperidin and narirutin from Citrus unshiu peel using subcritical water. Journal of Food Engineering. 2012;110(3):472–477. DOI:
  34. M’hiri N, Ioannou I, Mihoubi Boudhrioua N, Ghoul M. Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food and Bioproducts Processing. 2015;69:161–170. DOI:
  35. Yao C-Y, Yang J-Y, Xu Z-L, Wang H, Lei,H-T, Sun Y-M, et al. Indirect Competitive Enzyme-Linked Immunosorbent Assay for Detection of Tylosin in Milk and Water Samples. Chinese Journal of Analytical Chemistry. 2018;46(8):1275–1281. DOI:
  36. Pal V, Saxena A, Singh S, Kumar S, Goel AK. Development of a TaqMan Real-Time Polymerase Chain Reaction Assay for Detection of Burkholderia mallei. Journal of Equine Veterinary Science. 2017;58:58–63. DOI:
  37. PCR Primers for Gene Expression Detection and Quantification [Internet]. [cited 2018 Sep 01]. Available from:
  38. Luo , Zhang H. The role of proinflammatory pathways in the pathogenesis of colitis-associated colorectal cancer. Mediators of Inflammation. 2017;2017. DOI:
  39. Nile SH, Ko EY, Kim DH, Keum Y-S. Screening of ferulic acid related compounds as inhibitors of xanthine oxidase and cyclooxygenase-2 with anti-inflammatory activity. Revista Brasileira de Farmacognosia. 2016;26(1):50–55. DOI:
  40. Rennert K, Steinborn S, Gröger M, Ungerböck B, Jank A-M, Ehgartner J, et al. A microfluidically perfused three dimensional human liver model. Biomaterials. 2015;71:119–131. DOI:
  41. Paccaud JP, Schifferli JA, Baggiolini M. NAP-1/IL-8 induces up-regulation of CR1 receptors in human neutrophil leukocytes. Biochemical and Biophysical Research Communications. 1990;166(1):187–192. DOI:
  42. Souza GR, Cunha TM, Silva RL, Lotufo CM, Verri WA, Funez MI, et al. Involvement of nuclear factor kappa B in the maintenance of persistent inflammatory hypernociception. Pharmacology, Biochemistry and Behavior. 2015;134:49–56. DOI:
  43. Alfaro C, Sanmamed MF, Rodríguez-Ruiz ME, Teijeira Á, Onate C, González Á, et al. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treatment Reviews. 2017;60:24–31. DOI:
  44. Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biology. 2015;6:334–343. DOI:
Как цитировать?
Ultrasonic and microwave activation of raspberry extract: antioxidant and anti-carcinogenic properties. Foods and Raw Materials, 2019, vol. 7, no. 2, pp. 264-273
Кемеровский государственный университет
2308-4057 (Print) /
2310-9599 (Online)
О журнале