ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Antipathogenic effects of emulsion and nanoemulsion of cinnamon essential oil against Rhizopus rot and grey mold on strawberry fruits

Application of essential oils in controlling plant pathogens is generally associated with difficulty due to low solubility in water, strong odor, physical and chemical instability. One of the ways to minimise these effects is to use a nanoemulsion system. It also increases the antimicrobial properties. In this research, after preparation of cinnamon (Cinnamon zeylanicum L.) essential oil (CEO), nanoemulsion of the essential oil was prepared and its physical and chemical properties were determined. The particle size of nanoemulsion was determined to be 115.33 ± 3.97 nm. Emulsification and nanoemulsion of the essential oil along with thiabendazole as an antifungal agent at various concentrations of active ingredient were studied for control of Rhizopus stolonifera and Botrytis cinerea fungi, strawberry fruit decay. Results in solid Potato Dextrose Agar (PDA) medium indicated that emulsion and nanoemulsion of CEO have a significant difference in antifungal activity against B. cinerea and R. stolonifera. The minimum inhibitory concentration was 500 and 1,000 μl fungi per liter of culture medium. According to the results of the research, essential oil nanoemulsion had a significant effect on the reduction of a fungal cartilage of strawberry fruit. In general, nano-emulsions of the essential oil showed more antifungal activity than essential oil. There was no significant difference in decay control between thiabendazole and CEO. The nano-emulsion of cinna- mon oil at a concentration of 0.2% proved significant effect in reducing fruit decay and showed the lowest fruit infec- tion (5.43%). Consequently, nano-emulsion of essential oil is recommended for the production of natural fungicides.
Ключевые слова
Cinnamon essential oil , strawberry , control of fungal rot , nanoemulsion , Botrytis cinerea
  1. Weerawatanakorn M., Wu J.C., Pan M.H., and Ho C.T. Reactivity and stability of selected flavor compounds. Journal of Food and Drug Analysis, 2015, vol. 23, no. 2, pp. 176–190. DOI:
  2. Wright K.P. and Kader A.A. Effect of slicing and controlled-atmosphere storage on the ascorbate content and quality of strawberries and persimmons. Postharvest Biology and Technology, 1997, vol. 10, no. 1, pp. 39–48. DOI: https://
  3. Bautista-Banos S., Garcia-Dominguez E., Barrera-Necha L.L., Reyes-Chilpa R., and Wilson C.L. Seasonal evaluation of the postharvest fungicidal activity of powders and extracts of huamuchil (Pithecellobiom dulce): Action against Botrytis cinerea, Penicillium digitatum and Rhizopus stolonifer of strawberry fruit. Postharvest Biology and Technol- ogy, 2003, vol. 29, no. 1, pp. 81–92. DOI:
  4. Ziedan E.H.E. and Farrag E.S. Fumigation of peach fruits with essential oils to control postharvest decay. Research Journal of Agriculture and Biological Sciences, 2008, vol. 4, no. 5, pp. 512–519.
  5. Wang S.Y. and Gao H. Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and post- harvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT – Food Science and Technology, 2013, vol. 52, no. 2, pp. 71–79. DOI:
  6. Naserzadeh Y., Pouya R.A., and Kasirlo M.M. Effects of herb Cinnamon to control blood sugar and fat. Advances in Environmental Biology, 2014, vol. 8, no. 13, pp. 1119–1123.
  7. Naserzadeh Y., Kartoolinejad D., Mahmoudi N., et al. Nine strains of Pseudomonas fluorescens and P. putida: Effects on growth indices seed and yield production of Carthamus tinctorius L. Research on Crops, 2018, vol. 19, no. 4, pp. 622–632. DOI:
  8. Salvia-Trujillo L., Rojas-Graü A., Soliva-Fortuny R., and Martín-Belloso O. Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 2015, vol. 105, pp. 8–16. DOI:
  9. Gyawali R. and Ibrahim S.A. Natural products as antimicrobial agents. Food Control, 2014, vol. 46, pp. 412–429. DOI:
  10. Tripathi P., Dubey N.K., and Shukla A.K. Use of some essential oils as post-harvest botanical fungicides in the ma- nagement of grey mold of grapes caused by Botrytis cinerea. World Journal of Microbiology and Biotechnology, 2008, vol. 21, no. 1, pp. 39–46. DOI:
  11. Nirmala M.J. and Nagarajan R. Recent research trends in fabrication and applications of plant essential oil based nanoemulsions. Journal of Nanomedicine & Nanotechnology, 2017, vol. 8, pp. 434–444. DOI: https://doi. org/10.4172/2157-7439.1000434.
  12. Chang Y., McLandsborough L., and McClements D.J. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: Influence of ripening inhibitors. Journal of Agricultural and Food Chemistry, 2012, vol. 60, no. 48, pp. 12056–12063. DOI:
  13. Chang Y., McLandsborough L., and McClements D.J. Physicochemical properties and antimicrobial efficacy of car- vacrol nanoemulsions formed by spontaneous emulsification. Journal of Agricultural and Food Chemistry, 2013, vol. 61, no. 37, pp. 8906–8913. DOI:
  14. Bernardi D.S., Pereira T.A., Maciel N.R., et al. Formation and stability of oil-in-water nanoemulsions contai- ning rice bran oil: in vitro and in vivo assessments. Journal of Nanobiotechnology, 2011, vol. 9. DOI: https://doi. org/10.1186/1477-3155-9-44.
  15. Mandal A. and Bera A. Surfactant stabilized Nanoemulsion: Characterization and application in enhanced oil reco- very. International Journal of Chemical and Molecular Engineering, 2012, vol. 6, no. 7, pp. 21–26.
  16. Seifi F., Farzaneh M., Rafati H., and Rezadoost H. Antifungal potency of some medicinal plants essential oils na- noemulsions to control soft rot in strawberry fruit caused by Rhizopus stolonifera. Biocontrol in Plant Protection, 2014, vol. 2, no. 1, pp. 69–79. DOI:
  17. Donsi F., Annuanziata M., Sessa M., and Ferrari G. Nanoencapsulation of essential oils to enhance their antimicro- bial activity in foods. LWT – Food Science and Technology, 2011, vol. 44, no. 9, pp. 1908–1914. DOI: https://doi. org/10.1016/j.lwt.2011.03.003.
  18. Ardalan F. Formulation of Nanoemulsions from essential oil of Cinnamomum zeylanicum in treatment of Helicobacter pylori infection. Iran, 2014. 72 p. (In Persian).
  19. Ghosh V., Mukherjee A., and Chandrasekaran N. Formulation and characterization of plant essential oil based na- noemulsion: Evaluation of its larvicidal activity against aedes aegypti. Asian Journal of Chemistry, 2013, vol. 25, pp. 321–323.
  20. Ghaderi L. Formulation of nanoemulsions from essential oil of Thymus daenensis in treatment of sinusitis. Iran, 2014. 96 p. (In Persian).
  21. Lee S.O., Choi G.J., Jang K.S., et al. Antifungal activity of five plants essential oils as fumigant against postharvest and soil borne plant pathogenic fungi. The Plant Pathology Journal, 2017, vol. 23, no. 2, pp. 97–102. DOI: http://doi. org/10.5423/PPJ.2007.23.2.097.
  22. Reddy M., Angers V.B., Gosselin P.A., and Arul J. Characterization and use of essential oil from Thymus vulgaris against Botrytis cinerea and Rhizopus stolonifer in strawberry fruits. Phytochemistry, 1998, vol. 47, no. 8, pp. 1515– 1520. DOI:
  23. Huang R., Li G.Q., Zhang J., et al. Control of postharvest Botrytis fruit rot of strawberry by volatile organic com- pounds of Candida intermedia. Phytopathology, 2011, vol. 101, no. 7, pp. 859–869. DOI: PHYTO-09-10-0255.
  24. McClements D.J. Food Emulsions: Principles, Practices, and Techniques. 3rd ed. New York: CRC Press Publ., 2016, pp. 1–26.
  25. Zeliou K., Papasotiropoulos V., Manoussopoulos Y., and Lamari F.N. Physical and chemical quality characteristics and antioxidant properties of strawberry cultivars (Fragaria × ananassa Duch.) In Greece: assessment of their sen- sory impact. Journal of the Science of Food and Agriculture, 2018, vol. 98, no. 11, p. 4065–4073. DOI: https://doi. org/10.1002/jsfa.8923.
  26. Defera D.J., Zigas B.N., and Polission M.G. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Protection, 2003, vol. 22, no. 1, pp. 39–44. DOI:
  27. Vagelas I., Papachatzis A., Kalorizou H., and Wogiatzi E. Biological control of Botrytis cinerea fruit rot (Grey mold) on strawberry and red pepper by olive oil mill wastewater. Biotechnology and Biotechnological Equipment, 2009, vol. 23, no. 4, pp. 1489–1491. DOI:
  28. Tajkarimi M.M., Ibrahim S.A., and Cliver D.O. Antimicrobial herb and spice compounds in food. Food Control, 2010, vol. 21, no. 9, pp. 1199–1218. DOI:
  29. Behnam S., Farzaneh M., Ahmadzadeh M., and Tehrani A.S. Composition and antifungal activity of essential oils of Mentha piperita and Lavendula angustifolia on post-harvest phytopathogenic. Communications in Agricultural and Applied Biological Sciences, 2006, vol. 71, pp. 1321–1326.
  30. Asghari-Marjanlo A., Mostofi Y., Shoeibi Sh., and Fattahi M. Effect of basil essence on controlling grey mold and postharvest quality of strawberries. Journal of Medicinal Plants, 2008, vol. 8, no. 1, pp. 131–139.
  31. Ranjbar H., Farzaneh M., Hadian J., Mirjalili M.H., and Sharifi R. Antifungal activity of the some essential oils on postharvest diseases of strawberry fruit. Pajouhesh and Sazandegi, 2008, vol. 81, pp. 54–60. (In Persian).
  32. Farzaneh M., Ranjbar H., Hadian J., and Mirjalili M.H. Biological control of some postharvest diseases of strawberry fruit by essential oils. 59th international symposium on crop protection. Belgium, 2007, pp. 273.
  33. Burt S. Essential oils: Their antibacterial properties and potential applications in foods – A review. International Jour- nal of Food Microbiology, 2004, vol. 94, no. 3, pp. 223–253. DOI:
  34. Goni P., Lopez P., Sanchez C. et al. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chemistry, 2009, vol. 116, no. 4, pp. 982–989. DOI: chem.2009.03.058.
  35. Saranya S., Chandrasekaran N., and Mukherjee A. Antibacterial activity of Eucalyptus Oil nanoemulsion againest Proteus Mirabilis. International Journal of Pharmacy and Pharmaceutical Sciences, 2012, vol. 4, pp. 668–671.
  36. Bendahou M., Muselli A., Grignon-Dubois M., et al. Antimicrobial activity and chemical composition of Origanum glandulosum Desf. essential oil and extract obtained by microwave extraction: Comparison with hydro distillation. Food Chemistry, 2008, vol. 106, no. 1, pp. 132–139. DOI:
  37. Hyldgaard M., Mygind T., and Meyer R.L. Essential oils in food preservation: mode of action, synergies, and in- teractions with food matrix components. Frontiers in Microbiology, 2012, vol. 3. DOI: fmicb.2012.00012.
  38. Wilkinson J.B. Harry’s Cosmeticology. Longman Scientific and Technical Publ., 1994, pp. 588–625.
  39. Cao S., Hu Z., and Pang B. Optimization of postharvest ultrasonic treatment of strawberry fruit. Postharvest Biology and Technology, 2010, vol. 55, no. 3, pp. 150–153. DOI:
  40. Mason T.G., Wilking J.N., Meleson K., Chang C.B., and Graves S. Nanoemulsions: formation, structure and phy- sical properties. Journal of Physics Condensed Matter, 2006, vol. 18, no. 41, pp. R635–R666. DOI: https://doi. org/10.1088/0953-8984/18/41/R01.
  41. Pourhossein-Alamdary M. Design formulation of Satureja khuzistanica essential oil nanoemulsions in treatment of sinusitis. Iran, 2012. 116 p. (In Persian).
Как цитировать?
Antipathogenic effects of emulsion and nanoemulsion of cinnamon essential oil against Rhizopus rot and grey mold on strawberry fruits. Foods and Raw Materials, 2019, vol. 7, no. 1, pp. 210-216
Кемеровский государственный университет
2308-4057 (Print) /
2310-9599 (Online)
О журнале