ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Volume 13, Issue 1, 2025

297
Abstract
Neurodegenerative disorder leads to a progressive memory loss that has only limited known medications. The use of ashwagandha, probiotics, or their combination may improve cholinergic activity, consequently providing therapeutic potency against amnesia and neuroplasticity disorders. We aimed to explore the modulatory benefits of ashwagandha extract and probiotics against induced behavioral and neurochemical retardations.
Acid curd (Karish) cheese samples were supplemented with ashwagandha extract and/or probiotics and subjected to chemical, microbiological, rheological, sensorial, and biological investigations by standard techniques.
The supplementation of Karish cheese with ashwagandha never deteriorated its chemical composition or rheological parameters. On the contrary, it exerted high antioxidant and phenolic potentials. Also, ashwagandha extract performed antimicrobial action against the tested pathogenic bacteria and showed better prebiotic effects with Lactobacillus plantarum. The biological study revealed that treating dementia-modeled rats with Karish cheese supplemented with ashwagandha and/or probiotics resulted in a detectable improvement in the behavioral and neurochemical measurements. However, the cheese supplemented with a formula of ashwagandha and probiotics had the greatest regenerating effect.
The supplementation of Karish cheese with ashwagandha and/or probiotics exhibited a modulatory efficiency against experimentally induced behavioral and neurochemical disorders.
233
Abstract
Polyphenols are present as nutrient components in many functional food formulations. However, their bioavailability is quite low, and they tend to degrade under extreme technological conditions, e.g., heating, pH, etc. Moreover, polyphenols are known for their specific bitter taste. As a result, a large amount of polyphenols spoils the sensory properties of the finished product. Encapsulation seems a prospective solution to this problem. This article provides a comprehensive review of scientific publications on various methods of polyphenol encapsulation.
The review covered publications registered in PubMed, Google Scholar, ResearchGate, Elsevier, eLIBRARY.RU, and Cyberleninka in 2002–2023 with a focus on original research articles published after 2012. The search involved such keywords as polyphenols, encapsulation, flavonoids, delivery systems, and functional products.
Encapsulating materials are made of organic or inorganic substances, as well as of their combinations. Mineral salts delay the contact between polyphenols and taste buds. However, they are not resistant enough to gastric juice. In this respect, organic matrices are more effective. Carbohydrates protect active molecules from degradation in the stomach. Liposomes increase the bioavailability of polyphenols. Milk or whey proteins also proved quite effective for a number of reasons. First, they mask the astringent taste, which makes it possible to include more polyphenols in functional food formulations. Second, the resulting product is fortified with valuable proteins and essential amino acids. Third, high concentrations of polyphenols possess enough antioxidant properties to increase the shelf-life.
Polyphenol encapsulation is an effective method of functional product design, especially in the sphere of foods made for dietary nutrition, sports, preventive diets, etc.
295
Abstract
Hyperlipidemia is an enduring metabolic ailment that affects glucose and lipid processing.
The research objective was to measure the total phenolic, flavonoid, and tannin contents in Olea europaea L. leaves and to to identify their antioxidant and antihyperlipidemic potential. The study included an in silico model of interaction for hydroxytyrosol, oleuropein, and xanthine dehydrogenase. The in vivo experiment involved rabbits that received olive leaves (150 mg/kg) and 10 mL of egg yolk as a high-fat diet. At the end of the experimental period, blood samples were tested for lipid profile, and tissue specimens were used for liver histology.
The total phenolic content was 119.84 ± 3.86 mg GAE/g, the total flavonoid content was 2.22 ± 0.07 mg CE/g, and the total tannin content was 21.25 ± 1.24 mg REQ/g dry weight. According to DPPH and FRAP analyses, the antioxidant capacities were 0.34 ± 0.06 μg/mL and 6.35 ± 0.52 μmol Fe(II)/g dry weight, respectively. In the experimental animals, O. europaea leaves reduced such parameters as total cholesterol, low-density lipoprotein, total triglycerides, total cholesterol vs. high-density lipoprotein, and low-density lipoprotein vs. high-density lipoprotein. The histopathological liver assay showed no signs of tissue damage while the samples obtained from the control group demonstrated steatosis deposits and cellular necrosis. Based on the energy and RMSD results, hydroxytyrosol proved an effective xanthine dehydrogenase inhibition.
These findings constitute a good scientific basis for the complementary future research on the potential of O. europaea leaves as ingredients of functional foods or medical drugs.
322
Abstract
Ashwagandha (Withania somnifera (L.) Dunal) is an Ayurvedic medicinal herb that has been known for its therapeutic properties for millennia. Ashwagandha contains several bioactive compounds, including withanolides, alkaloids, and saponins. They make ashwagandha a potent adaptogen and a versatile herb that can maintain optimal health and overall well-being. Ashwagandha reduces stress and anxiety, as well as boosts the immune system. Its anti-inflammatory properties treat arthritis, asthma, diabetes, and inflammatory bowel disease.
Ashwagandha produces an immunomodulatory effect on natural killer cells, lymphocytes, and leukemia cells. It enhances the activity of natural killer cells, increases lymphocyte function, and induces apoptosis in leukemia cells. However, its mechanism of action still remains understudied.
Ashwagandha has an impact on COVID-19: phytochemical withanone blocks or weakens the interaction between S-protein and Angiotensin-converting enzyme 2. Withanoside V and somniferine inhibit viral transcription and replication caused by SARSCoV-2 Mpro.
This review explores the potential utilization of ashwagandha in the food industry, i.e., its safety and toxicity, as well as the mechanism behind its immunomodulatory effect.
218
Abstract
Synthesized in plants, polyphenols are powerful antioxidants and protect against stressful conditions. We aimed to identify different kinds of phytochemicals in fruits and provide detailed information on the roles they play in promoting good health in the human body. We also discussed the biological activities of phytochemicals found in several fruits.
Google Scholar and PubMed databases were used to search for relevant information that could assist in answering our research questions. We selected and reviewed both research and review articles related to the purpose of our study.
Fruits contain numerous antioxidants which neutralize the negative impact of free radicals on the body. Free radicals are destructive species that can be produced during normal body metabolism or come from exogenous sources such as smoking or exposure to radiation. Due to their unstable nature, they can cause damage to cellular macromolecules, resulting in the development of degenerative diseases. Phytochemicals are diverse groups of bioactive compounds found in fruits that have potent antioxidant activity and exhibit several health-promoting properties in both in vivo and in vitro studies. There are two major groups of antioxidants: natural (or dietary) antioxidants and synthetic antioxidants. Natural antioxidants have gained much popularity in recent times because of the safety concerns surrounding the use of synthetic antioxidants.
The consumption of fruits plays a critical role in disease prevention, especially diseases resulting from oxidative damage to cells. The inclusion of fruits in one’s daily diet helps improve their overall wellbeing.
272
Abstract
Coacervation is a low-energy method that is ideal for encapsulating heat-sensitive materials, e.g., limonene, citral, linalool, and isoamyl acetate.
This research used a simple coacervation method to prepare flavoring beads with alginate and Tween 80. The methods of scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy made it possible to study the morphology and structure of the flavoring beads. After the extraction, the flavor retention and structure were described using the method of gas chromatography with mass spectrometry (GC-MS).
The microcapsules demonstrated a retention rate of 99.07–99.73% while the encapsulation efficiency remained as high as 96.40–97.07%. The microcapsules had a mononuclear structure and ranged from spherical to elongated ellipsoids; they were sealed without agglomeration. The particle size was below 1000 µm. The GC-MS chromatograms detected neither structural changes nor any new compounds. The FTIR spectra were similar to the control but demonstrated slight shifts, which suggested fundamental structural changes caused by the coacervation. We also fortified sponge cake and jelly with flavoring beads. The sensory analysis of the sponge cake samples revealed no significant differences compared to the control. All the fortified jelly samples had higher scores for smell, taste, texture, and overall preference than the control.
The coacervation method proved to be an excellent solution for the problem of heat-sensitive flavorings that often lose quality or sensory attributes in food products that undergo extensive thermal treatment.
701
Abstract
Phylogenetic information on microbial communities involved in fermenting botanicals has important implications for the food industry since it can provide a valuable perspective on the diversity, composition, and techno-functional properties and characteristics of the final product. Microbial phylogenetic analysis illustrates the evolutionary history of microbes through visual representational graphs (phylogenetic trees) showing the beginning and advancement of their assemblage.
In this study, we used molecular methods to determine the phylogenetic identities of microbes occurring in spontaneously fermented sweet potato, maize, and pigeon pea samples after a 72-hourly evaluation every 12 h. The sequences obtained were edited using the bioinformatics algorithm against similar sequences downloaded from the National Center for Biotechnology Information (NCBI) database using BLASTN and aligned using ClustalX. The neighbor-joining technique was applied to extrapolate the chronicle of the isolates evolution.
Molecular identification from the BLASTN results showed the following bacterial isolates: Lysinibacillus macrolides, Klebsiella pneumoniae, Lactococcus lactis, Providencia stuartii, Enterobacter cloacae, Limosilactobacillus fermentum, Lactobacillus fermentum, Staphylococcus edaphicus, and Bacillus flexus, as well as the following fungal isolates: Trichosporon asahii, Mucor irregularis, Cladosporium tenuissimum, and Aspergillus niger. The sequences obtained from the isolates produced an exact match with the NCBI non-redundant nucleotide (nr/nt) database. L. lactis had the highest percentage occurrence for bacteria (38.46%), while T. asahii and A. niger showed the highest occurrence for fungi (37.50%).
Identifying and characterizing the microorganisms involved in the fermentation process would allow optimizing fermentation conditions to enhance the quality and nutritional value of the final products.