ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)


The study has been carried out at the All-Russian Research Institute of Grain and Its Processing Products. This paper describes the formation of new grades of triticale flour based on the cumulative ash curves the analysis of technological and biochemical indicators of which showed that flour of the grades T-60, T-70 and T-80 obtained from endosperm can be used directly in bakery, flour of the grades T-120 and T-220 obtained from peripheral parts and triticale bran can be limitedly used in bakery, and are mainly raw materials for further processing. On the basis of the study of the kinetics and efficiency of the effect of proteolytic and cellulolytic enzyme preparations (EP) and their compositions, optimal conditions for enzymatic modification (the EP dosage is 0.5-0.75 units of PA/g of flour, 0.3...0.4 units of CA/g of bran, the optimum temperature is 40-50C, pH is 5.0 and 3.5, the duration of reactions is 1.5 and 2 hours) have been determined. It has been shown using the gel-chromatography method that the use of multienzyme compositions (MEC) of proteases allowed to hydrolyze triticale flour proteins completely and to use the obtained hydrolyzate as a component of hypoallergenic and gluten-free flour products. The use of cellulolytic EP allowed to increase the amount of reducing substances and soluble protein by 1.5-2.5 times in comparison with the control sample. The biomodified bran obtained using the MEC "Shearzyme 500 L" + "Neutrase 1.5 MG" and "Viscoferm L" + "Distizym Protacid Extra" has a high degree of hydrolysis of non-starch polysaccharides and proteins, is characterized by a certain ratio of high-, medium-, low-molecular peptides and amino acids, has different functional and technological properties. They can be used in the production of a wide range of general-purpose, functional and treatment-and-prophylactic food products
Triticale grain, flour, bran, grain processing technology, enzyme preparations, modified grain processing products, functional and technological properties
  1. Pankratov G.N., Meleshkina E.P., Kandrokov R.Kh., and Vitol I.S. Tekhnologicheskie svoystva novykh sortov tritikalevoy muki [Technological properties of new grades of triticale flour]. Bread products, 2016, no. 1, pp. 60-62. (In Russian).
  2. Pankratov G.N. and Kandrokov R.Kh. Investigation of the process of dressing grits in the grinding of grain triticale. Food processing industry, 2017, no. 7, pp. 30-33. (In Russian).
  3. Pankratov G.N., Kandrokov R.Kh., and Shcherbakova E.V. Issledovanie protsessa izmel'cheniya zerna tritikale [Investigation of the process of grinding of triticale grain]. Bread products, 2016, no. 10, pp. 59-61. (In Russian).
  4. Vitol I.S., Meleshkina E.P., Kandrokov R.Kh., Verezhnikova I.A., and Karpilenko G.P. Biokhimicheskaya kharakteristika novykh sortov tritikalevoy muki [Biochemical characteristics of new grades of triticale flour]. Bread products, 2016, no. 2, pp. 42-44. (In Russian).
  5. Thomas T.M. Triticale - a new cereal. Farm Food Reseach, 1984, vol. 15, no. 5, p. 191.
  6. Obzor rynka tritikale v Rossii [A review of the market of triticale in Russia]. Available at: (accessed 28 March 2017).
  7. Gosudarstvennyy reestr selektsionnykh dostizheniy, dopushchennykh k ispol'zovaniyu. T.1. Sorta rasteniy (ofits. izd.) [State register of breeding achievements approved for use. Vol. 1. Varieties of plants (official ed.)]. Moscow: Rosinformagrotech Publ., 2017. 484 p.
  8. Chen C.H. and Bushuk W. Nature of protein in Triticale and its parental species. I. Solulibity characteristics and amino acid composition of endosperms proteins. Canadian Journal of Plant Science, 1980, vol. 50, pp. 914-931.
  9. Erkinbaeva R.K. Technologies of bakery products from triticale flour. Baking in Russia, 2004, no. 4, pp. 14-15. (In Russian).
  10. Karchevskaya O.V., Dremucheva G.F., and Grabovets A.I. Scientific and technological aspects of triticale grain in the production of bakery products. Bakery of Russia, 2013, no. 5, pp. 28-29. (In Russian).
  11. Magomedov G.O., Malyutina T.N., and Shapkarina A.I. Development of aerated confectionery products of high nutritional value using triticale flour. Proceedings of the Voronezh State University of Engineering Technologies, 2016, no. 1, pp. 106-109. DOI: 10.20914/2310-1202-2016-1-106-109. (In Russian).
  12. López-Sánchez J., Ponce-Alquicira E., Pedroza-Islas R., de la Peña-Díaz A., and Soriano-Santos J. Effects of heat and pH treatments and in vitro digestion on the biological activity of protein hydrolysates of Amaranthus hypochondriacus L. grain. Journal of Food Science Technology, 2016, vol. 53, no. 12, pp. 4298-4307. DOI: 10.1007/s13197-016-2428-0.
  13. Norckova M., Rusnakova M., and Zemanovic J. Enzymatic hydrolysis of defatted soy flour by three different proteases and their effect the functional properties of resulting protein. Czech Journal of Food Sciences, 2000, vol. 20, no. 1, pp. 7-14.
  14. Taha F.S., Ibrahim M.A., and Ismail A. Effect of partial enzymatic hydrolysis on the molecular weight of some oilseed protein. Egyptian Journal of Food Science, 2002, vol. 30, pp. 247-268.
  15. Kasai N., Murata A., and Inui H. Enzymatic high digestion of soybean milk residue (Okara). Journal of Agricultural and Food Chemistry, 2004, vol. 52, no. 18, pp. 5709-5716. DOI: 10.1021/jf035067v.
  16. Cho Myong J., Unklesbay Nan, Hsieh Fu-hung, and Clarke Andrew D. Hydrophobicity of bitter peptides from soy protein hydrolysates. Journal of Agricultural and Food Chemistry, 2004, vol. 52, no. 19, pp. 5895-5901. DOI: 10.1021/jf0495035.
  17. Lowry O.H., Rosebrougt N.J., Farr A.L., and Randall R.J. Protein measurement with Folin phenol reagent. Journal of Biological Chemistry, 1951, vol. 193, p. 265.
  18. Anson M.L. The estimation of pepsin, trypsin, papain and catepsin with hemoglobin. Journal of General Physiology, 1938, vol. 22, pp. 79-82. DOI: 10.1085/jgp.22.1.79.
  19. Nechaev A.P., Traubenberg S.E., Kochetkova A.A., et al. Pishchevaya khimiya [Food Chemistry]. St. Petersburg: GIORD Publ., 2003. 304 p.
  20. Vitol I.S. and Karpilenko G.P. Modification triticale flour using a proteolytic enzyme preparations. Storage and processing of farm products, 2015, no. 9, pp. 17-22. (In Russian).
  21. Vitol I.S., Meleshkina E.P., and Karpilenko G.P. Bioconversion of tritikale bran using enzyme preparations of cellulolytic and proteolytic action. Storage and processing of farm products, 2016, no. 10, pp. 35-38. (In Russian).
  22. Zabodalova L.A. Nauchnye osnovy sozdaniya produktov funktsional'nogo naznacheniya [Scientific foundations of functional products]. St. Petersburg: ITMO University Publ., 2015. 86 p.
  23. Toshev A.D., Polyakova N.V., and Salomatov A.S. The research of technological properties of № 2 puffed pearl barley grits. Food Processing: Techniques and Technology, 2012, no. 1, pp. 77-81. (In Russian).
  24. Renzyaeva T.V., Tuboltseva A.S., Ponkratova E.K., Lugovaya A.V., and Kazantseva A.V. Functional and technological properties of powdered raw materials and food additives for confectionary. Food Processing: Techniques and Technology, 2014, no. 4, pp. 43-49. (In Russian).
  25. Madl R.L. and Tsen C.C. Proteolytic activity of triticale. Cereal Chemistry, 1973, vol. 50, p. 215
  26. Wang C.C. and Grant L.L. The proteolytic enzymes in wheat flour. Cereal Chemistry, 1969, vol. 46, p. 537.
  27. Shanenko E.F., Popov M.P., and Kretovich V.L. Neutral wheat proteases. Applied Biochemistry and Microbiology, 1985, vol. 21, no. 2, pp. 173-175. (In Russian).
  28. Dunaevsky A.E., Komantsev V.N. and Belozersky M.A. Trypsin-like enzyme from rye seeds: some properties and substrate specificity. Russian Journal of Bioorganic Chemistry, 1976, vol. 2, no. 2, pp. 221-227. (In Russian).
  29. Vitol I.S., Karpilenko G.P., Starichenkov A.A., Koval A.I. and Zhiltsova N.S. Protein-proteinase complex grain triticale. Storage and processing of farm products, 2015, no. 8, pp. 36-39. (In Russian).
  30. Bezborodov A.M., Zagustina N.A., and Popov O.V. Fermentativnye protsessy v biotekhnologii [Enzymatic processes in biotechnology]. Moscow: Nauka Publ., 2008. 335 p.
  31. Darmanian E.B. and Darmanian P.M. Intermolecular association of hemicelluloses and vegetable proteins. Applied Biochemistry and Microbiology, 1995, vol. 31, pp. 346-352. (In Russian).
  32. Meleshkina E.P., Vitol I.S., and Karpilenko G.P. Modification of vegetable protein of triticale grain by means of biotechnological methods. Bread products, 2016, no. 5, pp. 62-64. (In Russian).
  33. Nechaev A.P., Traubenberg S.E., Kochetkova A.A., et al. Pishchevaya khimiya [Food Chemistry]. St. Petersburg: GIORD Publ., 2015. 672 p.
  34. Kolpakova V.V., Nechaev A.P., Severinenko S.M., and Martynova I.V. Biological, nutritional value, functional properties and uses of wheat bran in food production. Storage and processing of farm products, 2000, no. 2, pp. 38-43. (In Russian).
  35. Kolpakova V.V., Zaitseva L.V., Martynova I.V., and Osipov Ye.A. Protein from wheaten bran: increase of output and functional properties. Storage and processing of farm products, 2007, no. 2, pp. 23-24. (In Russian).
  36. Vitol I.S., Meleshkina E.P., and Karpilenko G.P. Functional properties of modified products of processing of triticale grain. Storage and processing of farm products, 2017, no. 2, pp. 27-29. (In Russian).
  37. Claver I.P. and Zhou H.M. Enzymatic hydrolysis of defatted wheat germ by proteases and the effect on the functional properties of resulting protein hydrolysates. Journal of Food Biochemistry, 2005, no. 29, pp. 13-26.
  38. Jung S., Lamsal B.P., and Stepien V. Functionality of soy protein produced by enzyme-assisted extraction. Journal of the American Oil Chemists' Society, 2006, vol. 83, no.1, pp. 71-78.
  39. Satya S.D. and Krushna C.D. Optimization of the production of shrimp waste protein hydrolysate using microbial proteases adopting response surface methodology. Journal of Food Science and Technology, 2012, vol. 49, no. 4, pp. 467-474. DOI: 10.1007/s13197-011-0294-3.
  40. Bhat Z.F., Kumar S.I., and Bhat H.F. Bioactive peptides of animal origin: a review. Journal of Food Science and Technology, 2014, vol. 51, no. 1, pp. 16-24. DOI: 10.1007/s13197-015-1731-5.
How to quote?
Meleshkina E.P., Pankratov G.N., Vitol I.S., Kandrokov R.H., and Tulyakov D.G. Innovative Trends in the Development of Advanced Triticale Grain Processing Technology. Foods and Raw Materials, 2017, vol. 5, no. 2, pp. 70–82. DOI: 10.21603/2308-4057-2017-2-70-82
About journal