ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Identification of the Origin of Sea Buckthorn Oil of the Altai Krai by Differential Scanning Calorinetry

Abstract
The composition of lipids derived by extraction with Freon 22 and enzymatic hydrolysis from berries, berry shells, and seeds of the Chuy sea buckthorn cultivar has been studied. The fatty acid composition and acid and peroxide values of the samples have been analyzed; the differential scanning calorimetry (DSC) melting curves have been examined. The DSC method has been found to be appropriate for determining the origin of raw materials and the production method for sea buckthorn oil.
Keywords
sea buckthorn oil, Altai district, production method, differential scanning calorimetry
REFERENCES
  1. Koshelev, Yu.A. and Ageeva, L.D., Oblepikha: Monografiya (Sea Buckthorn: A Monograph), Biysk: Nauchno-Issled. Tsentr, Biysk Gos. Pedag. Univ., 2004.
  2. Bal, L.M., Meda, V., Naik, S.N., and Satya, S., Sea buckthorn berries: A potential source of valuable nutrients for nutraceuticals and cosmeceuticals, Food Research International, 2011, vol. 44, no. 7, pp. 1718–1727.
  3. Larmo, P., The Health Effects of Sea Buckthorn Berries and Oil, Turku: Univ. Turku, 2011.
  4. Gutierrez, L.-F., Ratti, C., and Belkacemi, K., Effects of drying method on the extraction yields and quality of oils from Quebec sea buckthorn (Hippophae rhamnoides L.) seeds and pulp, Food Chemistry, 2008, vol. 106, pp. 896904.
  5. AOCS Official Method Cd 8b-90: Acid Value, 2011.
  6. AOCS Official Method Cd 8–53: Peroxide ValueAcetic AcidChloroform Method, 2011.
  7. Ranjith, A., Kumar, K.S., Venugopalan, V.V., Arumughan, C., Sawhney, R.C., and Singh, V., Fatty acids, tocols, and carotenoids in pulp oil of three sea buckthorn species (Hippophae rhamnoides, H. salicifolia, and H. tibetana) grown in the Indian Himalayas, Journal of American Oil Chemists Society, 2006, vol. 83, no. 4, pp. 359364.
  8. Dulf, F.V., Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania, Chemistry Central Journal, 2012, vol. 6, no. 9, pp. 106118.
  9. Mörsel, J.-T. and Steen, S., Analysis and identification of sea buckthorn oil of different origin, Proc. 1st Int. Conf. on Seabuckthorn, Berlin, 2003, pp. 810.
  10. Tan, C.P. and Che Man, Y.B., Comparative differential scanning calorimetric analysis of vegetable oils: I. Effects of heating rate variation, Phytochemical Analysis, 2002, vol. 13, no. 1, pp. 129141.
  11. Gutierrez, L.F., Extraction et caractéristiques des huiles de l´argousier (Hippophaë rhamnoides L.). Une étude des effets de la méthode de déshydratation des fruits sur le rendement d´extraction et la qualité des huiles, Thesis, Quebec: University Laval, 2007, pp. 8797.
  12. Metin, S. and Hartel, R.W., Crystallization of fats and oils, in Bailey’s Industrial Oil and Fat Products, Shahidi, F., Ed., New York: Wiley, 2005, vol. 1, 6th ed., pp. 4576.
  13. Sato, K. and Ueno, S., Polymorphism in fats and oils, in Bailey’s Industrial Oil and Fat Products, Shahidi, F., Ed., New York: Wiley, 2005, vol. 1, 6th ed., pp. 77120.
How to quote?
About journal

Download
Contents
Abstract
Keywords
References