ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Microstructure and cooking quality of barley-enriched pasta produced at different process parameters

Abstract
Pasta is one of the most popular meals in the world. It is affordable, easy to combine with other foods and easy to cook. Unfortunately, pasta is energy-rich and nutrient-poor. Whole-wheat pasta is somewhat better in nutritional quality, but further improvements may be made. One option is to add different raw materials and specific nutritive components (vitamins, polyphenols, fiber, protein, etc.) to semolina. However, this approach changes its physico-chemical properties, e.g. cooking loss, texture, etc., which cannot be disregarded. The current research investigates possibilities for production of barley-enriched pasta with acceptable cooking qualities. To ensure the beneficial health effects of β-glucan, β-glucan-rich barley was selected asa starting material. Pasta enriched with 10–50% β-glucan-rich barley flour was produced in the mini-press and the laboratory extruder and then dried at low, medium and high temperature regimes. Colour, cooking quality and microstructure of the enriched pasta were investigated to determine its acceptability. The research showed that barley-enriched pasta of good cooking quality might be produced by selecting an optimal combination of suitable production parameters for forming and drying.
Keywords
Barley, cooking quality, drying regimes, extrusion, pasta
REFERENCES
  1. la Gatta B., Rutigliano M., Padalino L., et al. The role of hydration on the cooking quality of bran-enriched pasta. LWT – Food Science and Technology, 2017, vol. 84, pp. 489–496. DOI: https://doi.org/10.1016/j.lwt.2017.06.013.
  2. Baldassano S., Accardi G., Aiello A., et al. Fibres as functional foods and the effects on gut hormones: The example of β-glucans in a single arm pilot study. Journal of Functional Foods, 2018, vol. 47, pp. 264–269. DOI: https://doi.org/10.1016/j.jff.2018.05.059.
  3. Bresson J.‐L., Flynn A., Heinonen M., et al. Scientific Opinion on the substantiation of health claims related to beta-glucans and maintenance of normal blood cholesterol concentrations (ID 754, 755, 757, 801, 1465, 2934) and maintenance or achievement of a normal body weight (ID 820, 823) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal, 2009, vol. 7, no. 9, pp. 1254. DOI: https://doi.org/10.2903/j.efsa.2009.1254.
  4. Agostoni C., Bresson J.‐L., Fairweather‐Tait S., et al. Scientific Opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake (ID 851, 852), reduction of post-prandial glycaemic responses (ID 821, 824), and «digestive function» (ID 850) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal, 2011, vol. 9, no. 6, pp. 2207. DOI: https://doi.org/10.2903/j.efsa.2011.2207.
  5. Suriano S., Iannucci A., Codianni P., et al. Phenolic acids profile, nutritional and phytochemical compounds, antioxidant properties in colored barley grown in southern Italy. Food Research International, 2018, vol. 113, pp. 221–233. DOI: https://doi.org/10.1016/j.foodres.2018.06.072.
  6. Sheikholeslami Z., Karimi M., Komeili H.R., et al. A new mixed bread formula with improved physicochemical properties by using hull-less barley flour at the presence of guar gum and ascorbic acid. LWT – Food Science and Technology, 2018, vol. 93, pp. 628 –633. DOI: https://doi.org/10.1016/j.lwt.2018.04.001.
  7. Chillo S., Ranawana D.V., and Henry C.J.K. Effect of two barley β-glucan concentrates on in vitro glycaemic impact and cooking quality of spaghetti. LWT – Food Science and Technology, 2011, vol. 44, no. 4, pp. 940–948. DOI: https://doi.org/10.1016/j.lwt.2010.11.022.
  8. Lamacchia C., Baiano A., Lamparelli S., et al. Polymeric protein formation during pasta-making with barley and semolina mixtures, and prediction of its effect on cooking behaviour and acceptability. Food Chemistry, 2011, vol. 129, no. 2, pp. 319–328. DOI: https://doi.org/10.1016/j.foodchem.2011.04.063.
  9. Aravind N., Sissons M., Egan N., et al. Effect of β-Glucan on Technological, Sensory, and Structural Properties of Durum Wheat Pasta. Cereal Chemistry, 2012, vol. 89, no. 2, pp. 84–93. DOI: https://doi.org/10.1094/CCHEM-08-11-0097.
  10. Montalbano A., Tesoriere L., Diana P., et al. Quality characteristics and in vitro digestibility study of barley flour enriched ditalini pasta. LWT – Food Science and Technology, 2016, vol. 72, pp. 223–228. DOI: https://doi.org/10.1016/j.lwt.2016.04.042.
  11. Cubadda F., Aureli F., Raggi A., et al. Effect of milling, pasta making and cooking on minerals in durum wheat. Journal of Cereal Science, 2009, vol. 49, no. 1, pp. 92–97. DOI: https://doi.org/10.1016/j.jcs.2008.07.008.
  12. Lamacchia C., Di Luccia A., Baiano A., et al. Changes in pasta proteins induced by drying cycles and their relationship to cooking behaviour. Journal of Cereal Science, 2007, vol. 46, no. 1, pp. 58–63. DOI: https://doi.org/10.1016/j.jcs.2006.12.004.
  13. West R., Seetharaman K., and Duizer L.M. Effect of drying profile and whole grain content on flavour and texture of pasta. Journal of Cereal Science, 2013, vol. 58, no. 1, pp. 82–88. DOI: https://doi.org/10.1016/j.jcs.2013.03.018.
  14. Chillo S., Laverse J., Falcone P.M., et al. Influence of the addition of buckwheat flour and durum wheat bran on spaghetti quality. Journal of Cereal Science, 2008, vol. 47, no. 2, pp. 144–152. DOI: https://doi.org/10.1016/j.jcs.2007.03.004.
  15. Feillet P., Autran J.C., and Icard-Vernière C. Pasta Brownness: An Assessment. Journal of Cereal Science, 2000, vol. 32, no. 3, pp. 215–233. DOI: https://doi.org/10.1006/jcrs.2000.0326.
  16. Jukić M., Ugarčić-Hardi Ž., and Koceva Komlenić D. Colour changes of pasta produced with different supplements during drying and cooking. Deutche Lebensmittel-Rundschau, 2007, vol. 103, no. 4, pp. 159–163.
  17. Lorusso A., Verni M., Montemurro M., et al. Use of fermented quinoa flour for pasta making and evaluation of the technological and nutritional features. LWT – Food Science and Technology, 2017, vol. 78, pp. 215–221. DOI: https://doi.org/10.1016/j.lwt.2016.12.046.
  18. Cardenas-Hernandez A., Beta T., Loarca-Pina M.G.F., et al. Improved functional properties of pasta: Enrichment with amaranth seed flour and dried amaranth leaves. Journal of Cereal Science, 2016, vol. 72, pp. 84–90. DOI: https://doi.org/10.1016/j.jcs.2016.09.014.
  19. Biernacka B., Dziki D., Gawlik-Dziki U., et al. Physical, sensorial, and antioxidant properties of common wheat pasta enriched with carob fiber. LWT – Food Science and Technology, 2016, vol. 77, pp. 186–192. DOI: https://doi.org/10.1016/j.lwt.2016.11.042.
  20. BeMiller J.N. and Whistler R.L. Starch: Chemistry & Technology (3rd ed.). Canada, UK: Academic Press, SAD, 2009. 894 p.
  21. Piwinska M., Wyrwisz J., Kurek M., et al. Effect of oat ß-glucan fiber powder and vacuum-drying on cooking quality and physical properties of pasta. CyTA – Journal of Food, 2015, vol. 14, pp. 101–108. DOI: https://doi.org/10.1080/19476337.2015.1052987.
  22. Padalino L., Caliandro R., Chita G., et al. Study of Drying Process on Starch Structural Properties and their Effect on Semolina Pasta Sensory Quality. Carbohydrate Polymers, 2016, vol. 153, no. 20, pp. 229–235. DOI: https://doi.org/10.1016/j.carbpol.2016.07.102.
  23. Aydin E. and Gocmen D. Cooking Quality and Sensorial Properties of Noodle Supplemented with Oat Flour. Food Science and Biotechnology, 2011, vol. 20, no. 2, pp. 507–511. DOI: https://doi.org/10.1007/s10068-011-0070-1.
  24. Zweifel C., Handschin S., Escher F., et al. Influence of High-Temperature Drying on Structural and Textural Properties of Durum Wheat Pasta. Cereal Chemistry, 2003, vol. 80 no. 2, pp. 159–167. DOI: https://doi.org/10.1094/CCHEM.2003.80.2.159.
  25. Laleg K., Barron C., Cordelle S., et al. How the structure, nutritional and sensory attributes of pasta made from legume flour is affected by the proportion of legume protein. LWT – Food Science and Technology, 2017, vol. 79, pp. 471–478. DOI: https://doi.org/10.1016/j.lwt.2017.01.069.
  26. Foschia M., Peressini D., Sensidoni A., et al. Synergistic effect of different dietary fibres in pasta on in vitro starch digestion? Food Chemistry, 2015, vol. 172, no. 1, pp. 245–250. DOI: https://doi.org/10.1016/j.foodchem.2014.09.062.
  27. Tudorică C.M., Kuri V., and Brennan C.S. Nutritional and Physicochemical Characteristics of Dietary Fiber Enriched Pasta. Journal of Agricultural and Food Chemistry, 2002, vol. 50, pp. 347–356. DOI: https://doi.org/10.1021/jf0106953.
How to quote?
About journal