ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Precision agriculture as a viable means of enhancing sustainable agricultural production

Abstract
Effective management of finite resources in precision agriculture requires efficient technologies to generate reliable data about crops, pastures, soil, water sources, climate, pests, diseases, and other variables. These data enable farmers to make informed decisions to enhance efficiency and make their production more sustainable. This review aimed to assess the technological advances in precision agriculture in terms of their benefits, constraints, and potential for sustainable farming practices.
A total of 132 scientific papers were selected, analyzed, and discussed to explore the current status and the future of precision agriculture in relation to sustainable development. This review covers technologies utilized in planting, crop monitoring, resource management, decision support systems, and automation.
The application of artificial intelligence (AI)-driven technologies, including machine learning, computer vision, and sensor technologies, transforms traditional farming and contributes to resolving its limitations by providing farmers with real-time data and actionable insights. Ethical considerations, data security, and the digital divide are among the key challenges needing attention. Interdisciplinary collaboration is also needed to tackle complex issues associated with the sustainable implementation of advanced technologies, including AI in precision agriculture.
Precision agriculture technologies have a transformative impact on traditional farming. The integration of AI contributes to higher productivity and efficiency, as well as long-term sustainability of farming practices, ensuring food security for the growing population.
Keywords
Precision agriculture, sustainability, advanced techniques, production efficiency, technology adoptability
REFERENCES
  1. Barker G. The agricultural revolution in prehistory: Why did foragers become farmers? Oxford: Oxford University Press; 2006, pp. 382–414. https://doi.org/10.1093/oso/9780199281091.003.0015
  2. Lowenberg-DeBoer J. The precision agriculture revolution. Foreign Affairs. 2015;94(3):105–112.
  3. Evenson RE, Gollin D. Assessing the impact of the Green Revolution. 1960 to 2000. Science. 2003;300(5620):758–762. https://doi.org/10.1126/science.1078710
  4. Gebbers R, Adamchuk VI. Precision agriculture and food security. Science. 2010;327(5967):828–831. https://doi.org/10.1126/science.1183899
  5. Harwood RR. A history of sustainable agriculture. Sustainable agricultural systems. Boca Raton: CRC Press; 2020, pp. 3–19. https://doi.org/10.1201/9781003070474-2
  6. Zargar M, Pakina E, Plushikov V, Vvedenskiy V, Bayat M. Efficacy of reducing lintour doses and biocontrol components for an effective weeds control in winter wheat (Triticum aestivum). Bulgarian Journal of Agricultural Science. 2017;23(3):980–987. https://elibrary.ru/UYGKAS
  7. Tendulkar A. Introduction to precision agriculture: Overview, concepts, world interest, policy, and economics. In: Abd El-Kader SM, El-Basioni BMM, editors. Precision Agriculture Technologies for Food Security and Sustainability. IGI Global Scientific Publishing; 2021, pp. 1–22. https://doi.org/10.4018/978-1-7998-5000-7.ch001
  8. Zarco-Tejada PJ, Hubbard N, Loudjani P. Precision agriculture: An opportunity for EU-farmers–potential support with the CAP 2014-2020. Joint Research Centre of the European Commission. 2014.
  9. Franzen D, Mulla D. A history of precision farming. In: Zhang Q, editor. Precision agriculture technology for crop farming. London: CRC Press; 2015, pp. 1–19. http://doi.org/10.1201/b19336-1
  10. Lieve VW. Precision-agriculture and the future of farming in Europe. Scientific Foresight Unit (STOA). Belgium: STOA; 2016, 1–42. https://doi.org/10.2861/020809
  11. Balabanov VI. Development of robotized complex for crop production. Vestnik of federal state educational establishment of higher professional education "Moscow state agroengineering university named after V.P. Goryachkin" 2017;(6):52–55. (In Russ.) https://elibrary.ru/ZWKXXV
  12. Bayat M, Engeribo A, Meretukov Z, Aigerim A, Temewei AG, et al. Response of common lambsquarters (Chenopodium album L.) to chemical weed control programs. Research on Crops. 2019;20(4):859–863. https://doi.org/10.31830/2348-7542.2019.127
  13. Lowenberg‐DeBoer J, Erickson B. Setting the record straight on precision agriculture adoption. Agronomy Journal. 2019;111(4):1552–1569. https://doi.org/10.2134/agronj2018.12.0779
  14. Ritchie H, Rosado P, Roser M. Environmental impacts of food production. Our World in Data. 2022. [cited 2025 Jul 15] Available from: https://ourworldindata.org/environmental-impacts-of-food
  15. Ngoma H, Lupiya P, Kabisa M, Hartley F. Impacts of climate change on agriculture and household welfare in Zambia: An economy-wide analysis. Climatic Change. 2021;167:55. https://doi.org/10.1007/s10584-021-03168-z
  16. Diakite S, Pakina E, Zargar M, Aldaibe AAA, Denis P, et al. Yield losses of cereal crops by Fusarium Link: A review on the perspective of biological control practices. Research on Crops. 2022;23(2):418–436. https://doi.org/10.31830/2348-7542.2022.057
  17. United Nations Department of economic and social affairs, population division. Global Population Growth and Sustainable Development. NY: United Nations Publication; 2021, 115 p.
  18. The 2021 World population data sheet. PRB. [cited 2024 Nov 10] Available from: https://interactives.prb.org/2021-wpds/
  19. Aragón FM, Rud JP. Modern industries, pollution and agricultural productivity: Evidence from Ghana. London: Internation Growth Centre; 2013, 50 p.
  20. The Global Land Outlook 1. United Nations Convention to Combat Desertification. [cited 2024 Nov 5]. Available from: https://www.unccd.int/resources/global-land-outlook/glo1
  21. Satterthwaite D, McGranahan G, Tacoli C. Urbanization and its implications for food and farming. Philosophical Transactions of the Royal Society B. 2010;365(1554):2809–2820. https://doi.org/10.1098/rstb.2010.0136
  22. Devendra C. Climate change threats and effects: Challenges for agriculture and food security. Kuala Lumpur: Academy of Sciences Malaysia. 2012.
  23. Saquee FS, Diakite S, Kavhiza NJ, Pakina E, Zargar M. The efficacy of micronutrient fertilizers on the yield formulation and quality of wheat grains. Agronomy. 2023;13(2):566. https://doi.org/10.3390/agronomy13020566
  24. Zhao C, Liu B, Piao S, Wang X, Lobell DB, et al. Temperature increase reduces global yields of major crops in four independent estimates. The Proceedings of the National Academy of Sciences. 2017;114(35):9326–9331. https://doi.org/10.1073/pnas.1701762114
  25. Chauhan BS. Grand challenges in weed management. Frontiers in Agronomy. 2020;1:3. https://doi.org/10.3389/fagro.2019.00003
  26. Bayat M, Zargar M, Chudinova E, Astarkhanova T, Pakina E. In vitro evaluation of antibacterial and antifungal activity of biogenic silver and copper nanoparticles: The first report of applying biogenic nanoparticles against Pilidium concavum and Pestalotia sp. Fungi. Molecules. 2021;26(17):5402. https://doi.org/10.3390/molecules26175402
  27. Różewicz M, Wyzińska M, Grabiński J. The most important fungal diseases of cereals–problems and possible solutions. Agronomy. 2021;11(4):714. https://doi.org/10.3390/agronomy11040714
  28. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology. 2012;13(6):614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
  29. He M, He CQ, Ding NZ. Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Frontiers in Plant Science. 2018;9:1771. https://doi.org/10.3389/fpls.2018.01771
  30. Climate change fans spread of pests and threatens plants and crops, new FAO study. Food and Agriculture Organization of the United Nations (FAO). [cited 2024 Sept 11] Available from: https://www.fao.org/newsroom/detail/Climate-change-fans-spread-of-pests-and-threatens-plants-and-crops-new-FAO-study/en
  31. Oerke EC. Crop losses to pests. The Journal of Agricultural Science. 2006;144(1):31–43. https://doi.org/10.1017/S0021859605005708
  32. Brás TA, Seixas J, Carvalhais N, Jägermeyr J. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environmental Research Letters. 2021;16(6):065012. https://doi.org/10.1088/1748-9326/abf004
  33. Monteiro A, Santos S, Gonçalves P. Precision agriculture for crop and livestock farming–brief review. Animals. 2021;11(8):2345. https://doi.org/10.3390/ani11082345
  34. Cook NM, Chng S, Woodman TL, Warren R, Oliver RP, et al. High frequency of fungicide resistance‐associated mutations in the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. Pest Management Science. 2021;77(7):3358–3371. https://doi.org/10.1002/ps.6380
  35. Krutyakov YA, Mukhina MT, Shapoval OA, Zargar M. Effect of foliar treatment with aqueous dispersions of silver nanoparticles on legume-Rhizobium symbiosis and yield of soybean (Glycine max L. Merr.). Agronomy. 2022;12(6):1473. https://doi.org/10.3390/agronomy12061473
  36. Zargar M, Pakina E, Dokukin P. Agronomic evaluation of mechanical and chemical weed management for reducing use of herbicides in single vs. twin-row sugar beet. Journal of Advanced Agricultural Technologies. 2017;4(1):62–67. http://doi.org/10.18178/joaat.4.1.62-67
  37. Zargar M, Bayat M, Saquee FS, Diakite S, Ramzanovich NM, et al. New advances in nano-enabled weed management using poly (epsilon-caprolactone)-based nanoherbicides: A review. Agriculture. 2023;13(10):2031. https://doi.org/10.3390/agriculture13102031
  38. Pimentel D. Environmental and economic costs of the application of pesticides primarily in the United States Integrated pest management. In: Peshin R, Dhawan AK, editors. Integrated Pest Management: Innovation-Development Process. Dordrecht: Springer; 2014, pp. 89–111. https://doi.org/10.1007/978-1-4020-8992-3_4
  39. Agafonov VP. Importance of barley production in economy and social development of the agro-industrial complex. Vestnik of Voronezh state agrarian university. 2017;9(16):3–12. (In Russ.)
  40. Filenko GA, Skvortsova YuG, Firsova TI, Filippov EG. The effect of reproduction on productivity and sowing traits of spring barley. Grain Economy of Russia. 2018;(3):53–57. (In Russ.) https://doi.org/10.31367/2079-8725-2018-57-3-53-57
  41. Haddad M, Nassar D, Shtaya M. Heavy metals accumulation in soil and uptake by barley (Hordeum vulgare) irrigated with contaminated water. Scientific reports. 2023;13:4121. https://doi.org/10.1038/s41598-022-18014-0
  42. Peters J, van Dam R, van Doorn R, Katerere D, Berthiller F, et al. Mycotoxin profiling of 1000 beer samples with a special focus on craft beer. PLoS One. 2017;12(10):e0185887. https://doi.org/10.1371/journal.pone.0185887
  43. Kumar D, Kalita P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods. 2017;6(1):8. https://doi.org/10.3390/foods6010008
  44. Altukhov AI, Zavalin AA, Milaschenko NZ, Trushkin SV. The problem of improving wheat quality in the country requires a complex solution. Bulletin of the Kursk State Agricultural Academy. 2020;(2):32–39. (In Russ.) https://elibrary.ru/PHACEU
  45. Beluhova-Uzunova RP, Dunchev, D. M. Precision farming–concepts and perspectives. Problems of Agricultural Economics. 2019;3:142–155. https://doi.org/10.30858/zer/112132
  46. Sahu B, Chatterjee S, Mukherjee S, Sharma C. Tools of precision agriculture: A review. International Journal of Chemical Studies. 2019;7(6):2692–2697.
  47. Pathak HS, Brown P, Best T. A systematic literature review of the factors affecting the precision agriculture adoption process. Precision Agriculture. 2019;20:1292–1316. https://doi.org/10.1007/s11119-019-09653-x
  48. Robert PC. Precision Agriculture: Research needs and status in the USA. Future directions of precision agriculture. Sheffield: Academic Press; 1999, pp. 19–33.
  49. Mcbratney A, Whelan B, Ancev T, Bouma J. Future Directions of Precision Agriculture. Precision Agriculture. 2005;6(1):7–23. https://doi.org/10.1007/s11119-005-0681-8
  50. International Society for Precision Agriculture. ISPA Forms Official Definition of "Precision Agriculture". Global Ag Tech Initiative. 2019.
  51. Burlutskiy VA, Peliy AF, Borodina ES, Diop A, Batygin AS, et al. Efficiency of advanced sprayers for nutrient and pesticide application under precision cultivation of spring rapeseed (Brassica napus). Research on Crops. 2020;21(3):466–472. https://doi.org/10.31830/2348-7542.2020.074
  52. Adewusi AO, Asuzu OF, Olorunsogo T, Iwuanyanwu C, Adaga E, et al. AI in precision agriculture: A review of technologies for sustainable farming practices. World Journal of Advanced Research and Reviews. 2024;21(01):2276–2285. https://doi.org/10.30574/wjarr.2024.21.1.0314
  53. Misra S, Ghosh A. Agriculture paradigm shift: A journey from traditional to modern agriculture. Biodiversity and Bioeconomy. Amsterdam: Elsevier; 2024, pp. 113–141. https://doi.org/10.1016/B978-0-323-95482-2.00006-7
  54. Patel A, Mahore A, Nalawade RD, Upadhyay A, Choudhary V. Advancements in precision agriculture: Harnessing the power of artificial intelligence and drones in Indian agriculture. World Environment Day. 2023:43.
  55. Doolittle JA, Brevik EC. The use of electromagnetic induction techniques in soils studies. Geoderma. 2014;223–225:33–45. https://doi.org/10.1016/j.geoderma.2014.01.027
  56. Adamchuk VI, Allred BJ, Doolittle J, Grote K, Rossel R, et al. Tools for proximal soil sensing. In: Ditzler C, West L, editors. Soil Survey Manual. Natural Resources Conservation Service. Washington: U. S. Department of Agriculture; 2015, 18 p.
  57. Dengeru Y, Ramasamy K, Allimuthu S, Balakrishnan S, Kumar APM, et al. Study on spray deposition and drift characteristics of uav agricultural sprayer for application of insecticide in redgram crop (Cajanus cajan L. Millsp.). Agronomy. 2022;12(12):3196. https://doi.org/10.3390/agronomy12123196
  58. Keshet D, Brook A, Malkinson D, Izhaki I, Charter M. The use of drones to determine rodent location and damage in agricultural crops. Drones. 2022;6(12):396. https://doi.org/10.3390/drones6120396
  59. Mishra H, Mishra D. Artificial intelligence and machine learning in agriculture: Transforming farming systems. Research Trends in Agriculture Science. 2023;1:1–16.
  60. Wilgenbusch JC, Pardey PG, Hospodarsky N, Lynch BJ. Addressing new data privacy realities affecting agricultural research and development: A tiered‐risk, standards‐based approach. Agronomy Journal. 2022;114(5):2653–2668. https://doi.org/10.1002/agj2.20968
  61. Liu Y, Gupta H, Springer E, Wagener T. Linking science with environmental decision making: Experiences from an integrated modeling approach to supporting sustainable water resources management. Environmental Modelling and Software. 2008;23(7):846–858. https://doi.org/10.1016/j.envsoft.2007.10.007
  62. Salcedo-Sanz S, Ghamisi P, Piles M, Werner M, Cuadra L, et al. Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources. Information Fusion. 2020;63:256–272. https://doi.org/10.1016/j.inffus.2020.07.004
  63. Beriya A, Saroja VN. Data-driven decision making for smart agriculture. ICT India Working Paper. 2019;(8):1–16.
  64. Karthikeyan A, Garg A, Vinod PK, Priyakumar UD. Machine learning based clinical decision support system for early COVID-19 mortality prediction. Frontiers in Public Health. 2021;9:626697. https://doi.org/10.3389/fpubh.2021.626697
  65. Shaikh TA, Rasool T, Lone FR. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Computers and Electronics in Agriculture. 2022;198:107119. https://doi.org/10.1016/j.compag.2022.107119
  66. Adebukola AA, Navya AN, Jordan FJ, Jenifer NJ, Begley RD. Cyber security as a threat to health care. Journal of Technology and Systems. 2022;4(1):32–64. https://doi.org/10.47941/jts.1149
  67. Sinwar D, Dhaka VS, Sharma MK, Rani G. AI-Based Yield Prediction and Smart Irrigation. In: Pattnaik P, Kumar R, Pal S, editors. Internet of Things and Analytics for Agriculture, Volume 2. Singapore: Springer; 2020, pp. 155–180. https://doi.org/10.1007/978-981-15-0663-5_8
  68. Abioye EA, Abidin MSZ, Mahmud MSA, Buyamin S, Ishak MHI, et al. A review on monitoring and advanced control strategies for precision irrigation. Computers and Electronics in Agriculture. 2020;173:105441. https://doi.org/10.1016/j.compag.2020.105441
  69. Ewim DRE, Okwu MO, Onyiriuka EJ, Abiodun AS, Abolarin SM, et al. A quick review of the applications of artificial neural networks (ANN) in the modelling of thermal systems. Engineering and Applied Science Research. 2021;49(3):444–458.
  70. Mouchou R, Laseinde T, Jen TC, Ukoba K. Developments in the application of nano materials for photovoltaic solar cell design, based on industry 4.0 integration scheme. In: Ahram TZ, Karwowski W, Kalra J, editors. Advances in Artificial Intelligence, Software and Systems Engineering: Proceedings of the AHFE 2021. Cham: Springer; 2021, pp. 510–521. https://doi.org/10.1007/978-3-030-80624-8_64
  71. Owebor K, Diemuodeke OE, Briggs TA, Eyenubo OJ, Ogorure OJ, et al. Multi-criteria optimisation of integrated power systems for low-environmental impact. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2022;44(2):3459–3476. https://doi.org/10.1080/15567036.2022.2064565
  72. Chowdhury S, Dey P, Joel-Edgar S, Bhattacharya S, Rodriguez-Espindola O, et al. Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review. 2023;33(1):100899. https://doi.org/10.1016/j.hrmr.2022.100899
  73. Rajendran V, Debnath B, Mghames S, Mandil W, Parsa S, et al. Towards autonomous selective harvesting: A review of robot perception, robot design, motion planning and control. Journal of Field Robotics. 2024;41(7):2247–2279. https://doi.org/10.1002/rob.22230
  74. Norsworthy JK, Ward SM, Shaw DR, Llewellyn RS, Nichols RL, et al. Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Science. 2012;60(SP1):31–62. https://doi.org/10.1614/WS-D-11-00155.1
  75. Vermesan O, Bahr R, Ottella M, Serrano M, Karlsen T, et al. Internet of robotic things intelligent connectivity and platforms. Frontiers in Robotics and AI. 2020;7(MAR):104. https://doi.org/10.3389/frobt.2020.00104
  76. Ukoba OK, Jen TC. Review of atomic layer deposition of nanostructured solar cells 4. Journal of Physics: Conference Series. 2019;1378(4):042060. https://doi.org/10.1088/1742-6596/1378/4/042060
  77. Dong H, Zhang J, Zhao X. Intelligent wind farm control via deep reinforcement learning and high-fidelity simulations. Applied Energy. 2021;292:116928. https://doi.org/10.1016/j.apenergy.2021.116928
  78. Habibzadeh H, Soyata T, Kantarci B, Boukerche A, Kaptan C. Sensing, communication and security planes: A new challenge for a smart city system design. Computer Networks. 2018;144:163–200. https://doi.org/10.1016/j.comnet.2018.08.001
  79. Fantana NL, Riedel T, Schlick J, Ferber S, Hupp J, et al. Internet of things - converging technologies for smart environments and integrated ecosystems. In: Vermesan O, Friess P, editors. River Publishers Series in Communications. Aalborg: River Publishers; 2013, pp. 155–204.
  80. Uddin SU, Chidolue O, Azeez A, Iqbal T. Design and analysis of a solar powered water filtration system for a community in black tickle-domino. 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). 2022:1–6. https://doi.org/10.1109/IEMTRONICS55184.2022.9795758
  81. Lytos A, Lagkas T, Sarigiannidis P, Zervakis M, Livanos G. Towards smart farming: Systems, frameworks and exploitation of multiple sources. Computer Networks. 2020;172:107147. https://doi.org/10.1016/j.comnet.2020.107147
  82. Petropoulos A, Siakoulis V, Stavroulakis E, Vlachogiannakis NE. Predicting bank insolvencies using machine learning techniques. International Journal of Forecasting. 2020;36(3):1092–1113. https://doi.org/10.1016/j.ijforecast.2019.11.005
  83. Ikwuagwu CV, Ajahb SA, Uchennab N, Uzomab N, Anutaa UJ, et al. Development of an arduino-controlled convective heat dryer. UNN International Conference: Technological Innovation for Holistic Sustainable Development (TECHISD2020). 2020;180–195.
  84. Little J, Knights P, Topal E. Integrated optimization of underground mine design and scheduling. Journal of The Southern African Institute of Mining and Metallurgy. 2013;113(10):775–785.
  85. Santesteban LG. Precision viticulture and advanced analytics. A short review. Food Chemistry. 2019;279:58–62. https://doi.org/10.1016/j.foodchem.2018.11.140
  86. Bayat M, Zargar M, Chudinova E, Astarkhanova T, Pakina E. In vitro evaluation of antibacterial and antifungal activity of biogenic silver and copper nanoparticles: The first report of applying biogenic nanoparticles against Pilidium concavum and Pestalotia sp. Fungi. Molecules. 2021;26(17):5402. https://doi.org/10.3390/molecules26175402
  87. Javaid M, Haleem A, Singh RP, Suman R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks. 2022;3:150–164. https://doi.org/10.1016/j.ijin.2022.09.004
  88. Bill R, Nash E, Grenzdörffer G, Wiebensohn J. Geographic Information Systems in Agriculture. In: Kresse W, Danko D, editors. Springer Handbook of Geographic Information. Cham: Springer; 2022, pp. 659–684. https://doi.org/10.1007/978-3-030-53125-6_24
  89. Ferencz C, Bognár P, Lichtenberger J, Hamar D, Tarcsai G, et al. Crop yield estimation by satellite remote sensing. International Journal of Remote Sensing. 2004;25(20):4113–4149. https://doi.org/10.1080/01431160410001698870
  90. Řezník T, Pavelka T, Herman L, Lukas V, Širůček P, et al. Prediction of yield productivity zones from Landsat 8 and Sentinel-2A/B and their evaluation using farm machinery measurements. Remote Sensing. 2020;12(12):1917. https://doi.org/10.3390/rs12121917
  91. Global variable rate technology (vrt) market size by type (fertilizer vrt, crop protection chemical vrt), by crop type (cereals and grains, oilseeds and pulses), by application (map-based vrt, sensor-based vrt), by offering (hardware, variable-rate software), by geographic scope and forecast in 2019.Verified Market Research. [cited 2024 Sept 10]. Available from: https://www.verifiedmarketresearch.com/product/variable-rate-technology-vrt-market/
  92. Kavhiza NJ, Vvedenskiy V, Behzad A, Bayat M, Kargar MH, et al. Weed mapping technologies in discerning and managing weed infestation levels of farming systems. Research on Crops. 2020;21(1):93–98. https://doi.org/10.31830/2348-7542.2020.015
  93. Zargar M, Bayat M, Astarkhanova T. Study of postemergence-directed herbicides for redroot pigweed (Amaranthus retroflexus L.) control in winter wheat in southern Russia. Journal of Plant Protection Research. 2020;60(1):7–13. https://elibrary.ru/IPPUEQ
  94. Perron I, Cambouris AN, Chokmani K, Vargas Gutierrez MF, Zebarth BJ, et al. Delineating soil management zones using a proximal soil sensing system in two commercial potato fields in New Brunswick, Canada. Canadian Journal of Soil Science. 2018;98(4):724–737. https://doi.org/10.1139/cjss-2018-0063
  95. Valente DSM, de Queiroz DM, Pinto FDADC, Santos FL, Santos NT. Spatial variability of apparent electrical conductivity and soil properties in a coffee production field. Engenharia Agrícola. 2014;34(6):1224֪–1233. https://doi.org/10.1590/S0100-69162014000600017
  96. Tripathi R, Nayak AK, Shahid M, Lal B, Gautam P, et al. Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. Catena. 2015;133:128–136. https://doi.org/10.1016/j.catena.2015.05.009
  97. Bongiovanni R, Lowenberg-DeBoer J. Precision agriculture and sustainability. Precision Agriculture. 2004;5:359–387. https://doi.org/10.1023/B:PRAG.0000040806.39604.aa
  98. Nejad SM, Najafabadi SN, Aghighi S, Pakina E, Zargar M. Evaluation of Phoma sp. biomass as an endophytic fungus for synthesis of extracellular gold nanoparticles with antibacterial and antifungal properties. Molecules. 2022;27(4):1181. https://doi.org/10.3390/molecules27041181
  99. Truflyak EV. Main elements of precision farming system. Izvestiya of Velikiye Luki State Agricultural Academy. 2016;(4):25–34. (In Russ.) https://www.elibrary.ru/VMHDCT
  100. Diacono M, Rubino P, Montemurro F. Precision nitrogen management of wheat. A review. Agronomy for Sustainable Development. 2013;33:219–241. https://doi.org/10.1007/s13593-012-0111-z
  101. Van Evert FK, Gaitán-Cremaschi D, Fountas S, Kempenaar C. Can precision agriculture increase the profitability and sustainability of the production of potatoes and olives? Sustainability. 2017;9(10):1863. https://doi.org/10.3390/su9101863
  102. Kazlauskas M, Šarauskis E, Lekavičienė K, Naujokienė V, Romaneckas K, et al. The comparison analysis of uniform-and variable-rate fertilizations on winter wheat yield parameters using site-specific seeding. Processes. 2022;10(12):2717. https://doi.org/10.3390/pr10122717
  103. Finco A, Bucci G, Belletti M, Bentivoglio D. The economic results of investing in precision agriculture in durum wheat production: A case study in central Italy. Agronomy. 2021;11(8):1520. https://doi.org/10.3390/agronomy11081520
  104. Kempenaar C, Been T, Booij J, Van Evert F, Michielsen JM, Kocks C. Advances in variable rate technology application in potato in the Netherlands. Potato Research. 2017;60:295–305. https://doi.org/10.1007/s11540-018-9357-4
  105. Ruigrok T, van Henten E, Booij J, van Boheemen K, Kootstra G. Application-specific evaluation of a weed-detection algorithm for plant-specific spraying. Sensors. 2020;20(24):7262. https://doi.org/10.3390/s20247262
  106. Kavhiza NJ, Zargar M, Prikhodko SI, Pakina EN, Murtazova KMS, et al. Improving crop productivity and ensuring food security through the adoption of genetically modified crops in Sub-Saharan Africa. Agronomy. 2022;12(2):439. https://doi.org/10.3390/agronomy12020439
  107. Munz J, Schuele H. Influencing the success of precision farming technology adoption–a model-based investigation of economic success factors in small-scale agriculture. Agriculture. 2022;12(11):1773. https://doi.org/10.3390/agriculture12111773
  108. Zubarev YuN, Fomin DS, Chashchin AN, Zabolotnova MV. Use of uncleaned aircraft in agriculture. Perm Federal Research Centre Journal. 2019;(2):47–51. https://doi.org/10.7242/2658-705X/2019.2.5
  109. Zhao W, Wu J, Shen Q, Yang J, Han X. Exploring the ability of solar-induced chlorophyll fluorescence for drought monitoring based on an intelligent irrigation control system. Remote Sensing. 2022;14(23):6157. https://doi.org/10.3390/rs14236157
  110. Griffin TW, Lowenberg-DeBoer J. Worldwide adoption and profitability of precision agriculture implications for Brazil. Revista de Politica Agricola. 2005:14(4):20–37.
  111. Gusev A, Skvortsov E, Volkova S. The study of the impact of introduction of precision farming technologies on the main production and economic indicators at agriculture organizations. AIP Conference Proceedings. 2022;2661(1):020012. https://doi.org/10.1063/5.0107626
  112. Ghadamkheir M, Klyushin PV, Orujov E, Bayat M, Mu Madumarov M, et al. Influence of sulfur fertilization on infection of wheat take-all disease caused by the fungus Gaeumannomyces graminis var. tritici. Research on Crops. 2020;21(3):627–633. https://doi.org/10.31830/2348-7542.2020.098
  113. Kelc D, Stajnko D, Berk P, Rakun J, Vindiš P, et al. Reduction of environmental pollution by using RTK-navigation in soil cultivation. International Journal of Agricultural and Biological Engineering. 2019;12(5):173–178. https://doi.org/10.25165/j.ijabe.20191205.4932
  114. Perea GR, Daccache A, Díaz RJA, Poyato CE, Knox JW. Modelling impacts of precision irrigation on crop yield and in-field water management. Precision Agriculture. 2018;19:497–512. https://doi.org/10.1007/s11119-017-9535-4
  115. Balogh P, Bujdos Á, Czibere I, Fodor L, Gabnai Z, et al. Main motivational factors of farmers adopting precision farming in Hungary. Agronomy. 2020;10(4):610. https://doi.org/10.3390/agronomy10040610
  116. Blasch J, van der Kroon B, van Beukering P, Munster R, Fabiani S, et al. Farmer preferences for adopting precision farming technologies: A case study from Italy. European Review of Agricultural Economics. 2022;49(1):33–81. https://doi.org/10.1093/erae/jbaa031
  117. Mizik T. How can precision farming work on a small scale? A systematic literature review. Precision Agriculture. 2023;24:384–406. https://doi.org/10.1007/s11119-022-09934-y
  118. Le Hoang Nguyen L, Halibas A, Quang Nguyen T. Determinants of precision agriculture technology adoption in developing countries: A review. Journal of Crop Improvement. 2023;37(1):1–24. https://doi.org/10.1080/15427528.2022.2080784
  119. Pandeya S, Gyawali BR, Upadhaya S. Factors influencing precision agriculture technology adoption among small-scale farmers in Kentucky and their implications for policy and practice. Agriculture. 2025;15(2):177. https://doi.org/10.3390/agriculture15020177
  120. Troiano S, Carzedda M, Marangon, F. Better richer than environmentally friendly? Describing preferences toward and factors affecting precision agriculture adoption in Italy. Agricultural and Food Economics. 2023;11:16. https://doi.org/10.1186/s40100-023-00247-w
  121. Weersink A, Fraser E, Pannell D, Duncan E, Rotz S. Opportunities and challenges for big data in agricultural and environmental analysis. Annual Review of Resource Economics. 2018;10:19–37. https://doi.org/10.1146/annurev-resource-100516-053654
  122. Jacobs AJ, Van Tol JJ, Du Preez CC. Farmers perceptions of precision agriculture and the role of agricultural extension: A case study of crop farming in the Schweizer-Reneke region, South Africa. South African Journal of Agricultural Extension. 2018;46(2):107–118. https://doi.org/10.17159/2413-3221/2018/v46n2a484
  123. Sishodia RP, Ray RL, Singh SK. Applications of remote sensing in precision agriculture: A Review. Remote Sensing. 2020;12(19):3136. https://doi.org/10.3390/rs12193136
  124. Groher T, Heitkämper K, Walter A, Liebisch F, Umstätter C. Status quo of adoption of precision agriculture enabling technologies in Swiss plant production. Precision Agriculutre. 2020;21:1327–1350. https://doi.org/10.1007/s11119-020-09723-5
  125. Barnes AP, Soto I, Eory V, Beck B, Balafoutis A, et al. Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy. 2019;80:163–174. https://doi.org/10.1016/j.landusepol.2018.10.004
  126. Kendall H, Clark B, Li W, Jin S, Jones GD, et al. Precision agriculture technology adoption: A qualitative study of small-scale commercial “Family farms” located in the north China plain. Precision Agriculture. 2022;23:319–351. https://doi.org/10.1007/s11119-021-09839-2
  127. Kendall H, Naughton P, Clark B, Taylor J, Li Z, et al. Precision agriculture in China: Exploring awareness, understanding, attitudes and perceptions of agricultural experts and end-users in China. Advances in Animal Biosciences. 2017;8(2):703–707. https://doi.org/10.1017/S2040470017001066
  128. Leska A, Nowak A, Nowak I, Górczyńska A. Effects of insecticides and microbiological contaminants on Apis mellifera health. Molecules. 2021;26(16):5080. https://doi.org/10.3390/molecules26165080
  129. Zhang N, Wang M, Wang N. Precision agriculture–a worldwide overview. Computers and Electronics in Agriculture. 2002;36(2–3):113–132. https://doi.org/10.1016/S0168-1699(02)00096-0
  130. Yost MA, Sudduth KA, Walthall CL, Kitchen NR. Public–private collaboration toward research, education and innovation opportunities in precision agriculture. Precision Agriculture. 2019;20:4–18. https://doi.org/10.1007/s11119-018-9583-4
How to quote?
Diakite S, Kavhiza NJ, Saquee FS, Pakina EN, Zargar M, et al. Precision agriculture as a viable means of enhancing sustainable agricultural production. Foods and Raw Materials. 2026;14(2):357–376. https://doi.org/10.21603/2308-4057-2026-2-680 
About journal

Download
Contents
Abstract
Keywords
References