ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Rhizobia as complex biofertilizers for wheat: Biological nitrogen fixation and plant growth promotion

Abstract
The biological fixation of atmospheric nitrogen by rhizobia plays a key role in the cycle of ecosystems and their productivity. In agriculture, it is often used to increase the yield of legumes. We aimed to assess the stimulatory properties of three bacterial strains (Ensifer meliloti 441 B-219, Ensifer mexicanus B-4064, and Rhizobium tropici B-216) and their potential for promoting wheat growth under laboratory conditions.
The bacterial were obtained from the All-Russian Collection of Industrial Microorganisms (National Bioresource Center, Kurchatov Institute). To explore their potential for agronomic practices, we determined their stimulating properties and assessed antagonistic activity against such phytopathogens as Fusarium graminearum F-877, Bipolaris sorokiniana F-529, Botrytis cinerea F-1006, Erwinia rhapontici B-9292, and Xanthomonas campestris B-4102. Finally, we studied the effect of the strains on germination and the contents of photosynthetic pigments, nitrogen, and protein in the above-ground parts of wheat plants under laboratory conditions.
All the test rhizobia strains demonstrated various stimulating properties. In particular, they produced phytohormones, fixed nitrogen, solubilized phosphates and zinc, and synthesized ACC deaminase. The strains also exhibited pronounced antagonistic activity against F. graminearum, B. sorokiniana, and Xanthomonas campestris. According to the laboratory tests, the wheat seeds treated with E. meliloti 441 B-219 and R. tropici B-216 had longer shoots and roots, as well as higher contents of chlorophyll and carotenoids in some wheat varieties. R. tropici also had a strong positive effect on the weight of shoots and roots in all wheat varieties. E. mexicanus B-4064 exhibited a positive effect only on germination in some varieties. However, none of the strains had a significant effect on the nitrogen content.
The test rhizobia strains have significant potential for stimulating plant growth, but they do not contribute to a significant increase in nitrogen availability for wheat.
Keywords
Triticum aestivum L., nitrogen fixation, biofortification, phytohormones, siderophores, solubilization
REFERENCES
  1. Kaplan D, Maymon M, Agapakis CM, Lee A, Wang A, Prigge BA, et al. A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods. American Journal of Botany. 2013;100(9):1713–1725. https://doi.org/10.3732/ajb.1200615
  2. Quiza L, St-Arnaud M, Yergeau E. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Frontiers in Plant Science. 2015;6:507. https://doi.org/10.3389/fpls.2015.00507
  3. Leach JE, Triplett LR, Argueso CT, Trivedi P. Communication in the Phytobiome. Cell. 2017;169(4):587–596. https://doi.org/10.1016/j.cell.2017.04.025
  4. Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends in Plant Science. 2012;17(8):478–486. https://doi.org/10.1016/j.tplants.2012.04.001
  5. Burén S, Rubio LM. State of the art in eukaryotic nitrogenase engineering. FEMS Microbiology Letters. 2018;365(2):fnx274. https://doi.org/10.1093/femsle/fnx274
  6. Dai Z, Guo X, Yin H, Liang Y, Cong J, Liu X. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage. PLoS ONE. 2014;9(2):e87976. https://doi.org/10.1371/journal.pone.0087976
  7. Seefeldt LC, Hoffman BM, Peters JW, Raugei S, Beratan DN, Antony E, et al. Energy transduction in nitrogenase. Accounts of Chemical Research. 2018;51(9):2179–2186. https://doi.org/10.1021/acs.accounts.8b00112
  8. Nonaka A, Yamamoto H, Kamiya N, Kotani H, Yamakawa H, Tsujimoto R, et al. Accessory proteins of the nitrogenase assembly, NifW, NifX/NafY, and NifZ, Are essential for diazotrophic growth in the nonheterocystous cyanobacterium Leptolyngbya boryana. Frontiers in Microbiology. 2019;10:495. https://doi.org/10.3389/fmicb.2019.00495
  9. White J, Prell J, James EK, Poole P. Nutrient sharing between symbionts. Plant Physiology. 2007;144(2):604–614. https://doi.org/10.1104/pp.107.097741
  10. Andrews M, Raven JA, Lea PJ. Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Annals of Applied Biology. 2013;163(2):174–199. https://doi.org/10.1111/aab.12045
  11. Raven JA. Why are mycorrhizal fungi and symbiotic nitrogen-fixing bacteria not genetically integrated into plants? Annals of Applied Biology. 2010;157(3):381–391. https://doi.org/10.1111/j.1744-7348.2010.00435.x
  12. Shah A, Nazari M, Antar M, Msimbira LA, Naamala J, Lyu D, et al. PGPR in agriculture: A sustainable approach to increasing climate change resilience. Frontiers in Sustainable Food Systems. 2021;5:667546. https://doi.org/10.3389/fsufs.2021.667546
  13. Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. Annals of Botany. 2013;111(5):743–767. https://doi.org/10.1093/aob/mct048
  14. Mus F, Crook MB, Garcia K, Costas AG, Geddes BA, Kouri ED, et al. Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied and Environmental Microbiology. 2016;82(13):3698–3710. https://doi.org/10.1128/AEM.01055-16
  15. Trabelsi D, Mhamdi R. Microbial inoculants and their impact on soil microbial communities: A review. BioMed Research International. 2013;2013(11):863240. https://doi.org/10.1155/2013/863240
  16. Gopalakrishnan S, Srinivas V, Prakash B, Sathya A, Vijayabharathi R. Plant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodules. 3 Biotech. 2015;5:653–661. https://doi.org/10.1007/s13205-014-0263-4
  17. Gopalakrishnan S, Srinivas V, Samineni S. Nitrogen fixation, plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea (Cicer arietinum L.). Biocatalysis and Agricultural Biotechnology. 2017;11:116–123. https://doi.org/10.1016/j.bcab.2017.06.012
  18. Ivanova S, Vesnina A, Fotina N, Prosekov A. An overview of carbon footprint of coal mining to curtail greenhouse gas emissions. Sustainability. 2022; 14(22):15135. https://doi.org/10.3390/su142215135
  19. Gopalakrishnan S, Srinivas V, Vemula A, Samineni S, Rathore A. Influence of diazotrophic bacteria on nodulation, nitrogen fixation, growth promotion and yield traits in five cultivars of chickpea. Biocatalysis and Agricultural Biotechnology. 2018;15:35–42, https://doi.org/10.1016/j.bcab.2018.05.006
  20. Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, et al. Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant and Soil. 2004;194:99–114. https://doi.org/10.1023/A:1004269902246
  21. Gebhardt C, Turner GL, Gibson AH, Dreyfus BL, Bergersen FJ. Nitrogen-fixing growth in continuous culture of a strain of Rhizobium sp. isolated from stem nodules on Sesbania rostrata. Microbiology. 1984;130(4):843–848. https://doi.org/10.1099/00221287-130-4-843
  22. Baset Mia MA, Shamsuddin ZH. Rhizobium as a crop enhancer and biofertilizer for increased cereal production. African Journal of Biotechnology. 2010:9(37):6001–6009.
  23. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech. 2015;5:355–377. https://doi.org/10.1007/s13205-014-0241-x
  24. Das K, Prasanna R, Saxena AK. Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiologica. 2017;62:425–435. https://doi.org/10.1007/s12223-017-0513-z
  25. Dent D, Cocking E. Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: The Greener Nitrogen Revolution. Agriculture and Food Security. 2017;6:7. https://doi.org/10.1186/s40066-016-0084-2
  26. Smercina DN, Evans SE, Friesen ML, Tiemann LK. To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere. Applied and Environmental Microbiology. 2019:85:e02546-18. https://doi.org/10.1128/AEM.02546-18
  27. Kennedy IR, Islam N. The current and potential contribution of asymbiotic nitrogen fixation to nitrogen requirements on farms: A review. Australian Journal of Experimental Agriculture. 2001;41(3):447–457. https://doi.org/10.1071/EA00081
  28. de Oliveira ALM, de Lima Canuto E, Massena Reis V, Ivo Baldani J. Response of micropropagated sugarcane varieties to inoculation with endophytic diazotrophic bacteria. Brazilian Journal of Microbiology. 2003;34:59–61. https://doi.org/10.1590/S1517-83822003000500020
  29. Pankievicz VCS, do Amaral FP, Santos KFDN, Agtuca B, Xu Y, Schueller MJ, et al. Robust biological nitrogen fixation in a model grass–bacterial association. The Plant Journal. 2015;81(6):907–919. https://doi.org/10.1111/tpj.12777
  30. van Deynze A, Zamora P, Delaux P-M, Heitmann C, Jayaraman D, Rajasekar S, et al. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology. 2018;16(8):e2006352. https://doi.org/10.1371/journal.pbio.2006352
  31. Carelli M, Gnocchi S, Fancelli S, Mengoni A, Paffetti D, Scotti C, et al. Genetic diversity and dynamics of Sinorhizobium meliloti populations nodulating different alfalfa cultivars in Italian soils. Applied and Environmental Microbiology. 2000;66(11):4785–4789. https://doi.org/10.1128/AEM.66.11.4785-4789.2000
  32. Pini F, Frascella A, Santopolo L, Bazzicalupo M, Biondi EG, Scotti C, et al. Exploring the plant-associated bacterial communities in Medicago sativa L. BMC Microbiology. 2012;12:78. https://doi.org/10.1186/1471-2180-12-78
  33. Pan H, Wang D. Nodule cysteine-rich peptides maintain a working balance during nitrogen-fixing symbiosis. Nature Plants. 2017;3:17048. https://doi.org/10.1038/nplants.2017.48
  34. Lloret L, Ormeño-Orrillo E, Rincón R, Martínez-Romero J, Rogel-Hernández MA, Martínez-Romero E. Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Systematic and Applied Microbiology. 2007;30(4):280–290. https://doi.org/10.1016/j.syapm.2006.12.002
  35. Gomes DF, Ormeño-Orrillo E, Hungria M. Biodiversity, symbiotic efficiency, and genomics of Rhizobium tropici and related species. In: de Bruijn FJ, editor. Biological nitrogen fixation. John Wiley & Sons; 2015. pp. 747–765. https://doi.org/10.1002/9781119053095.ch74
  36. Estévez J, Soria-Díaz ME, de Córdoba FF, Morón B, Manyani H, Gil A, et al. Different and new Nod factors produced by Rhizobium tropici CIAT899 following Na+ stress. FEMS Microbiology Letters. 2009;293(2):220–231. https://doi.org/10.1111/j.1574-6968.2009.01540.x
  37. del Cerro P, Rolla-Santos AAP, Gomes DF, Marks BB, del Rosario Espuny M, Rodríguez-Carvajal MÁ, et al. Opening the “black box” of nodD3, nodD4 and nodD5 genes of Rhizobium tropici strain CIAT 899. BMC Genomics. 2015;16:864. https://doi.org/10.1186/s12864-015-2033-z
  38. del Cerro P, Rolla-Santos AAP, Gomes DF, Marks BB, Pérez-Montaño F, Rodríguez-Carvajal MÁ, et al. Regulatory nodD1 and nodD2 genes of Rhizobium tropici strain CIAT 899 and their roles in the early stages of molecular signaling and host-legume nodulation. BMC Genomics. 2015;16:251. https://doi.org/10.1186/s12864-015-1458-8
  39. D’Haeze W, Holsters M. Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology. 2002;12(6);79R–105R. https://doi.org/10.1093/glycob/12.6.79R
  40. Relić B, Talmont F, Kopcinska J, Golinowski W, Promé JC, Broughton WJ. Biological activity of Rhizobium sp. NGR234 Nod-factors on Macroptilium atropurpureum. Molecular Plant-Microbe Interactions. 1993;6(6):764–774. https://doi.org/10.1094/mpmi-6-764
  41. Miransari M, Smith D. Rhizobial lipo-chitooligosaccharides and gibberellins enhance barley (Hordeum vulgare L.) seed germination. Biotechnology. 2009;8(2):270–275. https://doi.org/10.3923/biotech.2009.270.275
  42. Atuchin VV, Asyakina LK, Serazetdinova YuR, Frolova AS, Velichkovich NS, Prosekov AYu. Microorganisms for bioremediation of soils contaminated with heavy metals. Microorganisms. 2023;11(4):864. https://doi.org/10.3390/microorganisms11040864
  43. Asyakina LK, Vorob'eva EE, Proskuryakova LA, Zharko MYu. Evaluating extremophilic microorganisms in industrial regions. Foods and Raw Materials. 2023;11(1):162–171. https://doi.org/10.21603/2308-4057-2023-1-556
  44. Asyakina LK, Isachkova OA, Kolpakova DE, Borodina EE, Boger VYu, Prosekov AYu. The effect of a microbial consortium on spring barley growth and development in the Kemerovo region, Kuzbass. Grain Economy of Russia. 2024;16(1):104–112. (In Russ.). https://doi.org/10.31367/2079-8725-2024-90-1-104-112
  45. Serazetdinova YuR, Bogacheva NN, Faskhutdinova ER, Asyakina LK, Proskuryakova LA. Aspects of the joint cultivation of Bacillus amyloliquefaciens and Bacillus aryabhattai for the intensification of growth-stimulating substances synthesis. Siberian Herald of Agricultural Science. 2024;54(6):41–48. (In Russ.). https://doi.org/10.26898/0370-8799-2024-6-4
  46. Parashar M, Dhar SK, Kaur J, Chauhan A, Tamang J, Singh GB, et al. Two novel plant-growth-promoting Lelliottia amnigena isolates from Euphorbia prostrata aiton enhance the overall productivity of wheat and tomato. Plants. 2023;12(17):3081. https://doi.org/10.3390/plants12173081
  47. Belkebla N, Bessai SA, Melo J, Caeiro MF, Cruz C, Nabti E. Restoration of Triticum aestivum growth under salt stress by phosphate-solubilizing bacterium isolated from southern Algeria. Agronomy. 2022;12(9):2050. https://doi.org/10.3390/agronomy12092050
  48. Faskhutdinova ER, Fotina NV, Neverova OA, Golubtsova YuV, Mudgal G, Asyakina LK, et al. Extremophilic bacteria as biofertilizer for agricultural wheat. Foods and Raw Materials. 2024;12(2):348–360. https://doi.org/10.21603/2308-4057-2024-2-613
  49. Asyakina LK, Mudgal G, Tikhonov SL, Larichev TA, Fotina NV, Prosekov AYu. Study of the potential of natural microbiota of spring soft wheat to increase yield. Achievements of Science and Technology in Agro-Industrial Complex. 2023;37(11):12–17. (In Russ.). https://elibrary.ru/HXXGEC
  50. Kazerooni EA, Maharachchikumbura SSN, Adhikari A, Al-Sadi AM, Kang S-M, Kim L-R, et al. Rhizospheric Bacillus amyloliquefaciens protects Capsicum annuum cv. Geumsugangsan from multiple abiotic stresses via multifarious plant growth-promoting attributes. Frontiers in Plant Science. 2021;12:669693. https://doi.org/10.3389/fpls.2021.669693
  51. Metuge JA, Havugimana E, Rugandirababisha J, Senwo ZM, Mutimawurugo MC. Evaluation of Rhizobium tropici – derived extracellular polymeric substances on selected soil properties, seed germination, and growth of black-eyed peas (Vigna unguiculata). Agricultural Sciences. 2024;15(5):548–564. https://doi.org/10.4236/as.2024.155031
  52. Imada EL, Rolla dos Santos AAP, de Oliveira ALM, Hungria M, Rodrigues EP. Indole-3-acetic acid production via the indole-3-pyruvate pathway by plant growth promoter Rhizobium tropici CIAT 899 is strongly inhibited by ammonium. Research in Microbiology. 2017;168(3):283–292. https://doi.org/10.1016/j.resmic.2016.10.010
  53. Sijilmassi B, Filali-Maltouf A, Fahde S, Ennahli Y, Boughribil S, Kumar S, et al. In-vitro plant growth promotion of rhizobium strains isolated from lentil root nodules under abiotic stresses. Agronomy. 2020;10(7):1006. https://doi.org/10.3390/agronomy10071006
  54. Tavares MJ, Nascimento FX, Glick BR, Rossi MJ. The expression of an exogenous ACC deaminase by the endophyte Serratia grimesii BXF1 promotes the early nodulation and growth of common bean. Letters in Applied Microbiology. 2018;66(3):252–259. https://doi.org/10.1111/lam.12847
  55. Spini G, Decorosi F, Cerboneschi M, Tegli S, Mengoni A, Viti, C, et al. Effect of the plant flavonoid luteolin on Ensifer meliloti 3001 phenotypic responses. Plant and Soil. 2016;399:159–178. https://doi.org/10.1007/s11104-015-2659-2
  56. Primo ED, Cossovich S, Nievas F, Bogino P, Humm EA, Hirsch AM, et al. Exopolysaccharide production in Ensifer meliloti laboratory and native strains and their effects on alfalfa inoculation. Archives of Microbiology. 2020;202:391–398. https://doi.org/10.1007/s00203-019-01756-3
  57. Checcucci A, Azzarello E, Bazzicalupo M, de Carlo A, Emiliani G, Mancuso S, et al. Role and regulation of ACC deaminase gene in Sinorhizobium meliloti: Is it a symbiotic, rhizospheric or endophytic gene? Frontiers in Genetics. 2017;8:6. https://doi.org/10.3389/fgene.2017.00006
  58. Alami S, Bennis M, Lamin H, Kaddouri K, Bouhnik O, Lamrabet M, et al. The inoculation with Ensifer meliloti sv. rigiduloides improves considerably the growth of Robinia pseudoacacia under lead-stress. Plant and Soil. 2023;497:119–137. https://doi.org/10.1007/s11104-023-05974-z
  59. Aslani borj M, Etesami H, Alikhani HA. Silicon improves the effect of phosphate-solubilizing bacterium and arbuscular mycorrhizal fungus on the phosphorus concentration of salinity stressed alfalfa (Medicago sativa L.). Rhizosphere. 2022;24:100619. https://doi.org/10.1016/j.rhisph.2022.100619
  60. Batnini M, Lopez-Gomez M, Palma F, Haddoudi I, Kallala N, Zribi K, et al. Sinorhizobium spp inoculation alleviates the effect of Fusarium oxysporum on Medicago truncatula plants by increasing antioxidant capacity and sucrose accumulation. Applied Soil Ecology. 2019;150:103458. https://doi.org/10.1016/j.apsoil.2019.103458
  61. Gazolla Volpiano C, Lisboa BB, de São José JFB, de Oliveira AMR, Beneduzi A, Pereira Passaglia LM, et al. Rhizobium strains in the biological control of the phytopathogenic fungi Sclerotium (Athelia) rolfsii on the common bean. Plant and Soil. 2018;432:229–243. https://doi.org/10.1007/s11104-018-3799-y
  62. Palta JA, Fillery IRP. N application enhances remobilization and reduces losses of pre-anthesis N in wheat grown on a duplex soil. Australian Journal of Agricultural Research. 1995;46(3):519–531. https://doi.org/10.1071/AR9950519
  63. Critchley CS. A physiological explanation for the canopy nitrogen requirement of winter wheat. PhD thesis. University of Nottingham. 2001. 274 p.
  64. Gaju O, Allard V, Martre P, Le Gouis J, Moreau D, Bogard M, et al. Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Research. 2014;155:213–223. https://doi.org/10.1016/j.fcr.2013.09.003
How to quote?
About journal

Download
Contents
Abstract
Keywords
References