Affiliation
a Industrial University of Ho Chi Minh City, Ho Chi Minh
Copyright ©Phuong et al. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0. (
http://creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.
Received 24 November, 2023 |
Accepted in revised form 06 February, 2024 |
Published 02 November, 2024
Abstract
Coriolosis aspera has been known as a medicinal mushroom commonly used in Vietnam, China, and certain regions in South Asia. It has many health-beneficial effects, namely anti-inflammatory, anti-cancerous, and anti-antioxidant. Despite these advantages, the rigid and durable cell walls of C. aspera pose challenges during chemical or mechanical extraction processes.
We aimed to identify the optimal method for extracting bioactive compounds from C. aspera among hot-water extraction, ultrasound-assisted extraction, microwave-assisted extraction, ultrasound-assisted alkali extraction, and ultrasound-assisted liquid nitrogen extraction.
Among these methods, a combination of liquid nitrogen treatment (with a material-to-nitrogen ratio of 1:6) and ultrasoundassisted extraction (15 min) proved to be the most effective. This method yielded the highest concentrations of polyphenols (4.69 ± 0.02 mg GAE/g dry weight), flavonoids (0.88 ± 0.01 mg QE/g dry weight), and triterpenoids (1.28 ± 0.01 mg OAE/g dry weight). Additionally, it exhibited a notable antioxidant activity of 3.48 ± 0.01 μg ascorbic acid/g dry weight. The scanning electron microscope images indicated that ultrasound-assisted liquid nitrogen extraction was the only method able to effectively disrupt the cell walls of C. aspera.
Our study contributes to the potential application of C. aspera in developing functional foods. It emphasizes the importance of effective extraction techniques in discovering medicinal properties of the mushroom.
Keywords
Anti-oxidant activity,
Coriolopsis aspera,
flavonoids,
mycelia,
triterpenoids,
ultrasound-assisted extraction
REFERENCES
- Chang ST, Wasser SP. The cultivation and environmental impact of mushrooms. Oxford Research Encyclopedia of Environmental Science. 2017. https://doi.org/10.1093/acrefore/9780199389414.013.231
- Ghosh K. A review mushrooms: A source of immunomodulating and antitumor polysaccharides. Journal of Physical Sciences. 2015;20:239–252.
- Nguyen N-T, Nguyen N-T, Dam S-M, Le T-T, Nguyen T-N, Van H-T, et al. Chemical composition and antioxidant, anti-inflammatory, and anticancer effects of extract from yunzhi mushroom (Coriolopsis aspera) in Vietnam. Pharmacophore. 2020;11(4):51–55.
- Bautista-González JA, Montoya A, Bye R, Esqueda M, Herrera-Campos MA. Traditional knowledge of medicinal mushrooms and lichens of Yuman peoples in Northern Mexico. Journal of Ethnobiology and Ethnomedicine. 2022;18:52. https://doi.org/10.1186/s13002-022-00550-8
- Dantas SBS, Moraes GKA, Araujo AR, Chapla VM. Phenolic compounds and bioactive extract produced by endophytic fungus Coriolopsis rigida. Natural Product Research. 2023;37(12):2037–2042. https://doi.org/10.1080/14786419.2022.2115492
- Evana E, Palupi KD, Oktavia L, Fathoni A. Bioprospection of Enggano macroscopic fungi as antibacterial and antioxidant agents. Berita Biologi. 2021;20(2):201–210. https://doi.org/10.14203/beritabiologi.v20i2.4110
- Abascal K, Yarnell E. A Turkey tails polysaccharide as an immunochemotherapy agent in cancer. Alternative and Complementary Therapies. 2007;13(4):178–182. https://doi.org/10.1089/act.2007.13410
- Wasser S. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology. 2002;60:258–274. https://doi.org/10.1007/s00253-002-1076-7
- Haneef M, Ceseracciu L, Canale C, Bayer IS, Heredia-Guerrero JA, Athanassiou A. Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Scientific Reports. 2017;7:41292. https://doi.org/10.1038/srep41292
- Chen L, Xu W, Lin S, Cheung PCK. Cell wall structure of mushroom sclerotium (Pleurotus tuber regium): Part 1. Fractionation and characterization of soluble cell wall polysaccharides. Food Hydrocolloids. 2014;36:189–195. https://doi.org/10.1016/j.foodhyd.2013.09.023
- Bleha R, Třešnáková L, Sushytskyi L, Capek P, Čopíková J, Klouček P, et al. Polysaccharides from basidiocarps of the polypore fungus Ganoderma resinaceum: Isolation and structure. Polymers. 2022;14(2):255. https://doi.org/10.3390/polym14020255
- Ma J, Fu Z, Ma P, Su Y, Zhang Q. Breaking and characteristics of Ganoderma lucidum spores by high speed entrifugal shearing pulverizer. Journal of Wuhan University of Technology – Materials Science. 2007;22:617–621. https://doi.org/10.1007/s11595-006-4617-6
- Panda D, Manickam S. Cavitation technology – The future of greener extraction method: A review on the extraction of natural products and process intensification mechanism and perspectives. Applied Sciences. 2019;9(4):766. https://doi.org/10.3390/app9040766
- Trygg J, Beltrame G, Yang B. Rupturing fungal cell walls for higher yield of polysaccharides: Acid treatment of the basidiomycete prior to extraction. Innovative Food Science and Emerging Technologies. 2019;57:102206. https://doi.org/10.1016/j.ifset.2019.102206
- Pinto D, Silva AM, Freitas V, Vallverdú-Queralt A, Delerue-Matos C, Rodrigues F. Microwave-assisted extraction as a green technology approach to recover polyphenols from Castanea sativa shells. ACS Food Science and Technology. 2021;1(2):229–241. https://doi.org/10.1021/acsfoodscitech.0c00055
- Sun H, Kang B, Chai Z, Sun H, Du H, Gao J, et al. Characterization of root-associated microbiota in medicinal plants Astragalus membranaceus and Astragalus mongholicus. Annals of Microbiology. 2017;67:587–599. https://doi.org/10.1007/s13213-017-1285-z
- Liang Z, Du B, Xie L, Jiayi Z, Lin F, Xia Y, et al. Pulverization using liquid nitrogen significantly improves physical properties of powder and extraction yield of polysaccharides of Astragalus mongholicus. International Journal of Food Engineering. 2017;13(2):20160034. https://doi.org/10.1515/ijfe-2016-0034
- Thuan NN, Mai DS, Trinh NTN, Thang TD, Tuan NN, Thien LT, et al. Optimization of the extraction process of bioactive compounds from the fruiting bodies of yunzhi mushroom (Coriolopsis aspera) in Vietnam by response surface methodology. Malaysian Journal of Chemistry. 2023;25(4):165–175. https://doi.org/10.55373/mjchem.v25i4.165
- Fogarasi M, Socaciu M-I, Sălăgean C-D, Ranga F, Fărcaș AC, Socaci SA, et al. Comparison of different extraction solvents for characterization of antioxidant potential and polyphenolic composition in Boletus edulis and Cantharellus cibarius mushrooms from Romania. Molecules. 2021;26(24):7508. https://doi.org/10.3390/molecules26247508
- Cai C, Ma J, Han C, Jin Y, Zhao G, He X. Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Scientific Reports. 2019;9:7418. https://doi.org/10.1038/s41598-019-43886-0
- Chu M, Khan RD, Zhou Y, Agar OT, Barrow CJ, Dunshea FR, et al. LC-ESI-QTOF-MS/MS characterization of phenolic compounds in common commercial mushrooms and their potential antioxidant activities. Processes. 2023;11(6):1711. https://doi.org/10.3390/pr11061711
- Machado-Carvalho L, Martins T, Aires A, Saavedra MJ, Marques G. Antioxidant, antibacterial, and cosmeceutical potential of four common edible mushrooms. Applied Sciences. 2023;13(13):7357. https://doi.org/10.3390/app13137357
- Zhang J, Wen C, Zhang H, Duan Y, Ma H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends in Food Science and Technology. 2020;95:183–195. https://doi.org/10.1016/j.tifs.2019.11.018
- Zheng Y, Cui J, Chen A-H, Zong Z-M, Wei X-Y. Optimization of ultrasonic-microwave assisted extraction and hepatoprotective activities of polysaccharides from Trametes orientalis. Molecules. 2019;24(1):147. https://doi.org/10.3390/molecules24010147
- Zheng Y, Li Y, Wang W. Optimization of ultrasonic-assisted extraction and in vitro antioxidant activities of polysaccharides from Trametes orientalis. Carbohydrate Polymers. 2014;111:315–323. https://doi.org/10.1016/j.carbpol.2014.04.034
- Kumar K, Srivastav S, Sharanagat VS. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry. 2021;70:105325. https://doi.org/10.1016/j.ultsonch.2020.105325
- Bagade SB, Patil M. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A review. Critical Reviews in Analytical Chemistry. 2021;51(2):138–149. https://doi.org/10.1080/10408347.2019.1686966
- Maeng J-H, Shahbaz HM, Ameer K, Jo Y, Kwon J-H. Optimization of microwave‐assisted extraction of bioactive compounds from Coriolus versicolor mushroom using response surface methodology. Journal of Food Process Engineering. 2017;40(2):e12421. https://doi.org/10.1111/jfpe.12421
- Smiderle FR, Morales D, Gil-Ramírez A, de Jesus LI, Gilbert-López B, Iacomini M, et al. Evaluation of microwave-assisted and pressurized liquid extractions to obtain β-d-glucans from mushrooms. Carbohydrate Polymers. 2017;156:165–174. https://doi.org/10.1016/j.carbpol.2016.09.029
- Sharma P, Tulsawani R. Ganoderma lucidum aqueous extract prevents hypobaric hypoxia induced memory deficit by modulating neurotransmission, neuroplasticity and maintaining redox homeostasis. Scientific Reports. 2020;10:8944. https://doi.org/10.1038/s41598-020-65812-5
- Ramirez M, Plaza ML, Azeredo A, Balaban MO, Marshall MR. Physicochemical and phytochemical properties of cold and hot water extraction from Hibiscus sabdariffa. Journal of Food Science. 2011;76(3):C428–C435. https://doi.org/10.1111/j.1750-3841.2011.02091.x
- Tepsongkroh B, Jangchud K, Trakoontivakorn G. Antioxidant properties and selected phenolic acids of five different tray-dried and freeze-dried mushrooms using methanol and hot water extraction. Journal of Food Measurement and Characterization. 2019;13:3097–3105. https://doi.org/10.1007/s11694-019-00232-2
- Leong YK, Yang F-C, Chang J-S. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydrate Polymers. 2021;251:117006. https://doi.org/10.1016/j.carbpol.2020.117006
- Zin MIM, Jimat DN, Nawawi WMFW. Physicochemical properties of fungal chitin nanopaper from shiitake (L. edodes), enoki (F. velutipes) and oyster mushrooms (P. ostreatus). Carbohydrate Polymers. 2022;281:119038. https://doi.org/10.1016/j.carbpol.2021.119038
- Razumov EYu, Safin RR, Mukhametzyanov ShR, Baigildeeva EI, Safina AV, Lebedev DO. Studies of the composition of the cryogenic ground chaga. IOP Conference Series: Materials Science and Engineering. 2020;986:012029. https://doi.org/10.1088/1757-899X/986/1/012029
- Kraljić K, Škevin D, Čukelj Mustač N, Benković M, Drakula S, Balbino S, et al. Influence of cryogenic grinding on the nutritional and antinutritional components of rapeseed cake. Applied Sciences. 2023;13(10):5841. https://doi.org/10.3390/app13105841
- Thiviya P, Gamage A, Kapilan R, Merah O, Madhujith T. Single cell protein production using different fruit waste: A review. Separations. 2022;9(7):178. https://doi.org/10.3390/separations9070178
How to quote?
Thu LM, Thuan NN, Nguyen LT, Mai DS, Phuong DV. Extraction methods: Effects on the contents of bioactive compounds and anti-oxidant activity of Coriolosis aspera mycelia. Foods and Raw Materials. 2025;13(2):355–365.
https://doi.org/10.21603/2308-4057-2025-2-642