ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Effect of organic compounds on cognac sensory profile

Abstract
Introduction. The present research featured the effect of carbonyls, phenols, furans, fatty alcohols, ethers, and other chemical compounds on the sensory properties of cognac distillates of different ages. The research objective was to identify additional criteria of sensory evaluation by measuring the effect of various compounds on perception intensity.
Study objects and methods. The study featured cognac samples of different ages. The experiment involved standard methods, including high-performance liquid and gas chromatography and a mathematical analysis based on Microsoft software.
Results and discussion. The content of fatty alcohols, ethers, and carbonyl compounds that formed as a result of fermentation demonstrated little change during the aging period in oak casks. A longer extraction increased the content of phenolic and furan compounds and sugars. The content of terpene compounds decreased due to their high lability. The study revealed the effect of organic compounds on taste descriptors. The article introduces multivariate equations that calculate the dependences of the descriptor intensity on the content of organic compounds. A correlation and regression analysis revealed that phenolic compounds had a significant effect on the taste formation of cognac samples, depending on the aging time.
Conclusion. Organic compounds proved to affect the taste profiles of cognac samples of different ages, as well as sensory evaluation descriptors.
Keywords
Sensory profile, cognac, organic compounds, fatty alcohols, ethers, volatile compounds, polyphenolic compounds, descriptors
REFERENCES
  1. Song L, Wei Y, Bergiel BJ. COGNAC consumption: A comparative study on American and Chinese consumers. Wine Economics and Policy. 2018;7(1):24–34. https://doi.org/10.1016/j.wep.2018.01.001.
  2. Awad P, Athès V, Decloux ME, Ferrari G, Snakkers G, Raguenaud P, et al. The evolution of volatile compounds during the distillation of cognac spirit. Journal of Agricultural and Food Chemistry. 2017;65(35):7736–7748. https://doi.org/10.1021/acs.jafc.7b02406.
  3. Inui T, Tsuchiya F, Ishimaru M, Oka K, Komura H. Different beers with different hops. Relevant compounds for their aroma characteristics. Journal of Agricultural and Food Chemistry. 2013;61(20):4758–4764. https://doi.org/10.1021/jf3053737.
  4. Rettberg N, Biendl M, Garbe L-A. Hop aroma and hoppy beer flavor: chemical backgrounds and analytical tools – A review. Journal of the American Society of Brewing Chemists. 2018;76(1):1–20. https://doi.org/10.1080/03610470.2017.1402574.
  5. De Simón BF, Martínez J, Sanz M, Cadahía E, Esteruelas E, Muñoz AM. Volatile compounds and sensorial characterisation of red wine aged in cherry, chestnut, false acacia, ash and oak wood barrels. Food Chemistry. 2014;147:346–356. https://doi.org/10.1016/j.foodchem.2013.09.158.
  6. Delia L, Jordão AM, Ricardo-Da-Silva JM. Influence of different wood chips species (oak, acacia and cherry) used in a short period of aging on the quality of “Encruzado” white wines. Mittelungen Klosterneuburg. 2017;67(2):84–96.
  7. Coldea TE, Socaciu C, Mudura E, Socaci SA, Ranga F, Pop CR et al. Volatile and phenolic profiles of traditional Romanian apple brandy after rapid ageing with different wood chips. Food Chemistry. 2020;320. https://doi.org/10.1016/j.foodchem.2020.126643.
  8. Ianni F, Segoloni E, Blasi F, Di Maria F. Low-molecular-weight phenols recovery by eco-friendly extraction from Quercus spp. wastes: An analytical and biomass-sustainability evaluation. Processes. 2020;8(4). https://doi.org/10.3390/pr8040387.
  9. Ruiz J, Kiene F, Belda I, Fracassetti D, Marquina D, Navascués E et al. Effects on varietal aromas during wine making: a review of the impact of varietal aromas on the flavor of wine. Applied Microbiology and Biotechnology. 2019;103(18):7425–7450. https://doi.org/10.1007/s00253-019-10008-9.
  10. Hu Y, Ma Y, Wu S, Chen T, He Y, Sun J, et al. Protective effect of Cyanidin-3-O-glucoside against ultraviolet B radiation-induced cell damage in human HaCaT Keratinocytes. Front Pharmacology. 2016;7. https://doi.org/10.3389/fphar.2016.00301.
  11. Escudero-Gilete ML, Hernanz D, Galán-Lorente C, Heredia FJ, Jara-Palacios MJ. Potential of cooperage byproducts rich in ellagitannins to improve the antioxidant activity and color expression of red wine anthocyanins. Foods. 2019;8(8). https://doi.org/10.3390/foods8080336.
  12. Noestheden M, Thiessen K, Dennis EG, Tiet B, Zandberg WF. Quantitating organoleptic volatile phenols in smokeexposed Vitis vinifera berries. Journal of Agricultural and Food chemistry. 2017;65(38):8418–8425. https://doi.org/10.1021/acs.jafc.7b03225.
  13. Del Fresno JM, Morata A, Ricardo-da-Silva JM, Escott C, Loira I, Lepe JAS. Modification of the polyphenolic and aromatic fractions of red wines aged on lees assisted with ultrasound. International Journal of Food Science and Technology. 2019;54(9):2690–2699. https://doi.org/10.1111/ijfs.14179.
  14. Călugăr A, Coldea TE, Pop CR, Pop TI, Babeș AC, Bunea CI, et al. Evaluation of volatile compounds during ageing with oak chips and oak barrel of Muscat Ottonel Wine. Processes. 2020;8(8). https://doi.org/10.3390/pr8081000.
  15. Tsakiris A, Kallithraka S, Kourkoutas Y. Grape brandy production, composition and sensory evaluation. Journal of Science and Food Agricultural. 2014;94(3):404–414. https://doi.org/10.1002/jsfa.6377.
  16. Aprotosoaie AC, Luca SV, Miron A. Flavor chemistry of cocoa and cocoa products – An overview. Comprehensive Reviews in Food Science and Food Safety. 2016;15(1):73–91. https://doi.org/10.1111/1541-4337.12180.
  17. Delompré T, Salles C, Briand L. Taste perception: from molecule to eating behaviour. Correspondances en MHND. 2020;24(3):88–92.
  18. Peschanskaya VA, Osipova VP, Trofimchenko VA, Tochilina RP, Goncharova SA. On the determination of the total extract and given not less than 35.0 % strength in wine production. Food Industry. 2016;(9):36–38. (In Russ.).
  19. Rodríguez-Solana R, Rodríguez-Freigedo S, Salgado JM, Domínguez JM, Cortés-Diéguez S. Optimisation of accelerated ageing of grape marc distillate on a micro-scale process using a Box-Benhken design: influence of oak origin, fragment size and toast level on the composition of the final product. Australian Journal of Grape and Wine Research2017;23(1):5–14. https://doi.org/10.1111/ajgw.12249.
  20. Giannetti V, Mariani MB, Marini F, Torrelli P, Biancolillo A. Flavour fingerprint for the differentiation of Grappa from other Italian distillates by GC-MS and chemometrics. Food Control. 2019;105:123–130. https://doi.org/10.1016/j.foodcont.2019.05.028.
  21. Herrera P, Durán-Guerrero E, Sánchez-Guillén MM, García-Moreno MV, Guillén DA, Barroso CG, et al. Effect of the type of wood used for ageing on the volatile composition of Pedro Ximénez sweet wine. Journal of the Science of Food and Agriculture. 2020;100(6):2512–2521. https://doi.org/10.1002/jsfa.10276.
  22. Viana EJ, de Carvalho Tavares IM, Rodrigues LMA, das Graças Cardoso M, Júnior JCB, Gualberto SA, et al. Evaluation of toxic compounds and quality parameters on the aged Brazilian sugarcane spirit. Research, Society and Development. 2020;9(8). https://doi.org/10.33448/rsd-v9i8.5544.
  23. Cherkashina YuA. Identifikatsiya konʹyakov s primeneniem organolepticheskogo analiza i fiziko-khimicheskikh metodov: opredelenie khromaticheskikh pokazateley, dubilʹnykh veshchestv i pokazatelya pH [Identification of cognacs using sensory evaluation and physicochemical methods: determination of chromatic indicators, tannins, and pH]. Bulletin of the Technological University. 2011;(7):198–204. (In Russ.).
  24. Botelho G, Anjos O, Estevinho LM, Caldeira I. Methanol in grape derived, fruit and honey spirits: A critical review on source, quality control, and legal limits. Processes. 2020;8(12). https://doi.org/10.3390/pr8121609.
  25. Oseledzeva IV, Kirpicheva LS. Assessment of the influence of long factor on variation of parameters of the factions volatile cognac wine materials and young brandy distillate. Agricultural Bulletin of Stavropol Region. 2015;17(1):246–252. (In Russ.).
  26. Puentes C, Joulia X, Vidal J-P, Esteban-Decloux M. Simulation of spirits distillation for a better understanding of volatile aroma compounds behavior: Application to Armagnac production. Food and Bioproducts Processing. 2018;112:31–62. https://doi.org/10.1016/j.fbp.2018.08.010.
  27. Santos F, Correia AC, Ortega-Heras M, García-Lomillo J, González-SanJosé ML, Jordão AM, et al. Acacia, cherry and oak wood chips used for a short aging period of rosé wines: effects on general phenolic parameters, volatile composition and sensory profile. Journal of the Science of Food and Agriculture. 2019;99(7):3588–3603. https://doi.org/10.1002/jsfa.9580.
  28. Fernandes OWB, Silva DF, Sanson AL, Coutrim MX, Afonso RJDCF, Eichler P, et al. Influence of harvest season and maturation of different sugarcane (Saccharum spp.) cultivars on the chemical composition of alembic Brazilian sugarcane spirit. OALib Journal. 2017;4. https://doi.org/10.4236/oalib.1103266.
  29. García-Moreno MV, Sánchez-Guillén MM, de Mier MR, Delgado-González MJ, Rodríguez-Dodero MC, GarcíaBarroso C, et al. Use of alternative wood for the ageing of brandy de Jerez. Foods. 2020;9(3). https://doi.org/10.3390/foods9030250.
  30. Xu ML, Yu Y, Ramaswamy HS, Zhu SM. Characterization of Chinese liquor aroma components during aging process and liquor age discrimination using gas chromatography combined with multivariable statistics. Scientific Reports. 2017;7. https://doi.org/10.1038/srep39671.
  31. Egorova EYu, Morozhenko YuV, Reznichenko IYu. Identification of aromatic aldehydes in the express assessment of quality of herbal distilled drinks. Foods and Raw Materials. 2017;5(1):144–113. https://doi.org/10.21179/2308-4057-2017-1-144-153.
  32. Cernîşev S. Analysis of lignin-derived phenolic compounds and their transformations in aged wine distillates. Food Control. 2017;73:281–290. https://doi.org/10.1016/j.foodcont.2016.08.015.
  33. Lukanin A, Sidorenko A. Criteria for determination of age of cognac spirits. Bulletin of Agricultural Science. 2016(10):51–60. (In Russ.). https://doi.org/10.31073/agrovisnyk201610-10.
  34. Savchuk SA, Vlasov VN, Appolonova SA, Arbuzov VN, Vedenin AN, Mezinov AB, et al. Application of chromatography and spectrometry to the authentication of alcoholic beverages. Journal of Analytical Chemistry. 2011;56(3):214–231. https://doi.org/10.1023/A:1009446221123.
  35. Chira K, Anguellu L, Da Costa G, Richard T, Pedrot E, Jourdes M, et al. New C-glycosidic ellagitannins formed upon oak wood toasting; identification and sensory evaluation. Foods. 2020;9(10). https://doi.org/10.3390/foods9101477.
  36. Payab M, Chaichi MJ, Nazari OL, Maleki FY. Tannin extraction from oak gall and evaluation of anti-oxidant activity and tannin iron chelation compared with deferoxamine drug. Journal of Drug Design and Medicinal Chemistry. 2019;5(2):18–25. https://doi.org/10.11648/j.jddmc.20190502.11.
  37. Marchal A, Pons A, Lavigne V, Dubourdieu D. Contribution of oak wood ageing to the sweet perception of dry wines. Australian Journal of Grape and Wine Research. 2013;19(1):11–19. https://doi.org/10.1111/ajgw.12013.
  38. Rasines-Perea Z, Jacquet R, Jourdes M, Quideau S, Teissedre PL. Ellagitannins and flavano-ellagitannins: Red wines tendency in different areas, barrel origin and ageing time in barrel and bottle. Biomolecules. 2019;9(8). https://doi.org/10.3390/biom9080316.
  39. Phetxumphou K, Miller G, Ashmore PL, Collins T, Lahne J. Mashbill and barrel aging effects on the sensory and chemometric profiles of American whiskeys. Journal of the Institute of Brewing. 2020;126(2):194–205. https://doi.org/10.1002/jib.596.
  40. Kumar V, Joshi VK, Thakur NS, Sharma N, Gupta RK. Effect of artificial ageing using different wood chips on physicochemical, sensory and antimicrobial properties of apple tea wine. Brazilian Archives of Biology and Technology. 2020;63. https://doi.org/10.1590/1678-4324-2020180413.
  41. Paixão JA, Filho ET, Bolini HMA. Investigation of alcohol factor influence in quantitative descriptive analysis and in the time-intensity profile of alcoholic and non-alcoholic commercial pilsen beers samples. Beverages. 2020;6(4). https://doi.org/10.3390/beverages6040073.
  42. Cvetković D, Stojilković P, Zvezdanović J, Stanojević J, Stanojević L, Karabegović I. The identification of volatile aroma compounds from local fruit based spirits using a headspace solid-phase microextraction technique coupled with the gas chromatography-mass spectrometry. Advanced Technologies. 2020;9(2):19–28. https://doi.org/10.5937/savteh2002019C.
How to quote?
Eliseev MN, Gribkova IN, Kosareva OA, Alexeyeva OM. Effect of organic compounds on cognac sensory profile. Foods and Raw Materials. 2021;9(2):244–253. https://doi.org/10.21603/2308-4057-2021-2-244-253
About journal

Download
Contents
Abstract
Keywords
References