ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

NanoKremny effect on the quality of grapes and wines

Abstract
Introduction. There is still an urgent need in viticulture for studying the effect of tank mixtures of pesticides and bioactive substances on Vitis vinifera and, therefore, the quality and composition of wine. We aimed to study the effect of NanoKremny (silicon fertilizer) treatment of the grapevine on the productivity and quality of grape harvest, as well as the quality of dry wines.
Study objects and methods. Grape varieties from three vineyards in Crimea and the wines produced from them. We applied standard methods used in viticulture, plant protection, and oenological practice. Organic acids and volatile components in grapes and wines were determined by high-performance liquid chromatography and gas chromatography.
Results and discussion. We found that the most effective use of NanoKremny was threefold at 0.15 L/ha during the periods of active growth and formation of vegetative and generative organs in grapevines. It had a positive effect on vegetative development, water balance, productivity of grape plants, as well as yield quality and quantity. Also, NanoKremny decreased the development of mildew and oidium diseases, preserved the content of titratable acids in grapes during their ripening, as well as accumulated phenolic compounds, tartaric and malic acids in grape berries.
Conclusion. We found no negative effect of NanoKremny treatment of the grapevine on the physicochemical parameters and sensory characteristics of wines. Thus, this preparation can be used as a bioorganic additive in viticulture.
Keywords
Grapes, NanoKremny, foliar dressing, tank mixture, productivity, yield parameters, wine, chemical composition, quality
FUNDING
The study was conducted under Research Agreements No. 67/16 of 12 July 2016, No. 48/17 of 4 April 2017, and No. 54/18 оf 7 May 2018.
REFERENCES
  1. Tubana BS, Babu T, Datnoff LE. A review of silicon in soils and plants and its role in us agriculture: History and future perspectives. Soil Science. 2016;181(9–10):393–411. https://doi.org/10.1097/SS.0000000000000179.
  2. Sahebi M, Hanafi MM, Akmar ASN, Rafii MY, Azizi P, Tengoua FF, et al. Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research International. 2015;2015. https://doi.org/10.1155/2015/396010.
  3. Reynolds OL, Padula MP, Zeng R, Gurr GM. Silicon: Potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Frontiers in Plant Science. 2016;7. https://doi.org/10.3389/fpls.2016.00744.
  4. Van Bockhaven J, De Vleesschauwer D, Höfte M. Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. Journal of Experimental Botany. 2013;64(5):1281–1293. https://doi.org/10.1093/jxb/ers329.
  5. Bakhat HF, Bibia N, Zia Z, Abbas S, Hammad HM, Fahad S, et al. Silicon mitigates biotic stresses in crop plants: A review. Crop Protection. 2018;104:21–34. https://doi.org/10.1016/j.cropro.2017.10.008.
  6. Habibi G. Effects of soil- and foliar-applied silicon on the resistance of grapevine plants to freezing stress. Acta Biologica Szegediensis. 2015;59(2):109–117.
  7. Haddad R, Kamangar A. The ameliorative effect of silicon and potassium on drought stressed grape (Vitis vinifera L.) leaves. Iranian Journal of Genetics and Plant Breeding. 2015;4(2):48–58.
  8. Jana S, Jeong BR. Silicon: The most under-appreciated element in horticultural crops. Trends in Horticultural Research. 2014;4(1):1–19. https://doi.org/10.3923/thr.2014.1.19.
  9. Song A, Li P, Fan F, Li Z, Liang Y. The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS ONE. 2014;9(11). https://doi.org/10.1371/journal.pone.0113782.
  10. Zia Z, Bakhat HF, Saqib ZA, Shah GM, Fahad S, Ashraf MR, et al. Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice. Ecotoxicology and Environmental Safety. 2017;144:11–18. https://doi.org/10.1016/j.ecoenv.2017.06.004.
  11. Cartes P, Cea M, Jara A, Violante A, Mora ML. Description of mutual interactions between silicon and phosphorus in Andisols by mathematical and mechanistic models. Chemosphere. 2015;131:164–170. https://doi.org/10.1016/j.chemosphere.2015.02.059.
  12. Alovisi AMT, Neto AEF, Serra AP, Alovisi AA, Tokura LK, Lourente ERP, et al. Phosphorus and silicon fertilizer rates effects on dynamics of soil phosphorus fractions in oxisol under common bean cultivation. African Journal of Agricultural Research. 2016;11(30):2697–2707. https://doi.org/10.5897/AJAR2016.11304.
  13. Veresoglou SD, Barto EK, Menexes G, Rillig MC. Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathology. 2013;62(5):961–969. https://doi.org/10.1111/ppa.12014.
  14. Kulikova AKh. Kremniy i vysokokremnistye porody v sisteme udobreniya selʹskokhozyaystvennykh kulʹtur [Silicon and high-siliceous rocks in the fertilization system for agricultural crops]. Ulyanovsk: Ulyanovsk State Agrarian University named after P.A. Stolypin; 2013. 176 p. (In Russ.).
  15. Sanin SS. Current phytosanitary problems in Russia. Izvestiya of Timiryazev Agricultural Academy. 2016;(6):45–55. (In Russ.).
  16. Serpuhovitina KA, Krasilnikov AA, Russo DE, Khudaverdov EN. Growth, development and productivity of varieties with systemic fertilizer of vineyards. Fruit growing and viticulture of South Russia. 2014;26(2):119–141. (In Russ.).
  17. Radchevsky PP, Matuzok NV, Bazoyan SS. Influence of a foliar spraying with new-generation mineral fertilizers on agrobiological and technological indicators of chardonnay grapes. Polythematic Online Scientific Journal Of Kuban State Agrarian University. 2016;(115):665–690. (In Russ.).
  18. Panasyuk AL, Kuzmina EI, Kharlamova LN, Babaeva MV, Romanova IP. Influence of bio-organic additives on the ability of yeast to provide biotransformation of pesticides in apple must. IOP Conference Series Materials Science and Engineering. 2019;582(1). https://doi.org/10.1088/1757-899X/582/1/012011.
  19. Panasjuk AL, Shishkov YuI, Kuzmina EI, Kharlamova LN, Zaharov MA, Borisova AL. Intensification of process of fermentation of an apple mash with use of the made active biomass of yeast. Vinodelie i vinogradarstvo [Winemaking and viticulture]. 2010;(5):14–15. (In Russ.).
  20. Panasjuk AL, Shishkov YuI, Kuzmina EI, Harlamova LN, Zaharov MA. Borisova AL. Change of ultrastructure of cells of wine yeast at use of a bioorganic additive. Vinodelie i vinogradarstvo [Winemaking and viticulture]. 2010;(6):24–25. (In Russ.).
  21. Dolzhenko VI. Metodicheskie ukazaniya po registratsionnym ispytaniyam fungitsidov v selʹskom khozyaystve [Methodological guidelines for registration testing of fungicides in agriculture]. St. Petersburg: VIZR; 2009. 379 p. (In Russ.).
  22. Sychev VG, Shapoval OA, Mozharova IP, Verevkina TM, Mukhina MT, Korshunov AA, et al.. Rukovodstvo po provedeniyu registratsionnykh ispytaniy agrokhimikatov v selʹskom khozyaystve [Guidelines for registration testing of agrochemicals in agriculture]. Moscow: Plodorodie; 2018. 193–200 p. (In Russ.).
  23. Gerzhikova VG. Methods of technical chemistry control in winemaking. Simferopol: Tavrida; 2009. 304 p. (In Russ.).
  24. Cagnasso E, Rolle L, Caudana A, Gerbi V. Relationship between grape phenolic maturity and red wine phenolic composition. Italian Journal of Food Science. 2008;20(3):365–380.
  25. Lee J, Durst RW, Wrolstad RE. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International. 2005;88(5):1269–1278. https://doi.org/10.1093/jaoac/88.5.1269.
  26. Aleinikova NV, Galkina ES, Berezovskaya SP, Radionovskaya YaE, Didenko PA, Shaporenko VN, et al. Biological regulation on the use of domestic antidote “Nanokremnyi” (Nano-Silicon) in the vineyards with winemaking grapes in Crimea. Magarach. Viticulture and Vinemaking. 2017;(4):35–37. (In Russ.).
  27. Aleinikova NV, Galkina ES, Didenko PA, Didenko LV. Determination of the impact of the use of domestic fertilizer NanoSilicon on the productivity of grapes in the soil and climatic conditions of the Crimea. Science Almanac. 2018;49(11–2):176–179. (In Russ.).
  28. Valuyko GG, Kosyura VT. Spravochnik po vinodeliyu [Winemaking guidelines]. Simferopol: Tavrida; 2000. 624 p. (In Russ.).
  29. Kulbat K. The role of phenolic compounds in plant resistance. Biotechnology and Food Sciences. 2016;80(2):97–108.
  30. Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S. Role of silicon on plant-pathogen interactions. Frontiers in Plant Science. 2017;8. https://doi.org/10.3389/fpls.2017.00701.
  31. Fortunato AA, Rodrigues F, do Nascimento KJT. Physiological and biochemical aspects of the resistance of banana plants to Fusarium wilt potentiated by silicon. Phytopathology.2012;102(10):957–966. https://doi.org/10.1094/PHYTO-02-12-0037-R.
  32. Ostroukhova EV, Peskova IV, Probeigolova PA, Verik GN. A study of the interrelationship between the carbohydrate and acid maturity and the phenolic maturity of the grape “Cabernet Sauvignon”. Magarach. Viticulture and Vinemaking. 2012;(1):30–32. (In Russ.).
  33. Danilewicz JC. Role of tartaric and malic acids in wine oxidation. Journal of Agricultural and Food Chemistry. 2014;62(22):5149–5155. https://doi.org/10.1021/jf5007402.
  34. Chidi BS, Bauer FF, Rossouw D. Organic acid metabolism and the impact of fermentation practices on wine acidity: A review. South African Journal for Enology and Viticulture. 2018;39(2):315−329. https://doi.org/10.21548/39-2-3172.
  35. Drincovich MF, Voll LM, Maurino VG. Editorial: On the diversity of roles of organic acids. Frontiers in Plant Science. 2016;7. https://doi.org/10.3389/fpls.2016.01592.
  36. Oliveira J, de Freitas V, Mateus N. Polymeric pigments in red wines. In: Morata A, editor. Red wine technology. Academic Press; 2019. pp. 207–218. https://doi.org/10.1016/B978-0-12-814399-5.00014-1.
How to quote?
Aleinikova NV, Peskova IV, Ostroukhova EV, Galkina YeS, Didenko PA, Probeigolova PA, et al. NanoKremny effect on the quality of grapes and wines. Foods and Raw Materials. 2021;9(2):224–233. https://doi.org/10.21603/2308-4057-2021-2-224-233
About journal

Download
Contents
Abstract
Keywords
Funding
References