ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Grape pomace treatment methods and their effects on storage

Abstract
Introduction. Grape pomace is the most important by-product of winemaking that can be used as an additional raw material. There is a need for an optimal storage technology so that pomace can be further processed to obtain new types of products. We aimed to study the effect of grape pomace treatment on its microflora.
Study objects and methods. We identified and quantified microflora on the fresh and one-month-stored pomace samples from white and red grape varieties. The samples were exposed to conventional drying at 60–65°C, infrared drying at 60–65°C, as well as sulfitation with sulfur dioxide and sodium metabisulfite.
Results and discussion. The pomace microflora can be considered a microbial community. Almost all the samples stored for one month in an open area contained Saccharomyces cerevisiae yeasts, higher concentrations of filmy yeasts of the Candida, Pichia, Hansenula, Hanseniaspora/Kloeckera, and Torulaspora genera, as well as conidia of Mucor, Aspergillus niger, and Penicillium molds. Prevalent bacteria included acetic acid (mainly Acetobacter aceti) and lactic acid (Lactobacillus plantarum, Pediococcus, Leuconostoc) bacteria. These microorganisms significantly changed concentrations of volatile and non-volatile components, decreasing total polysaccharides, phenolic compounds, and anthocyanins 1.7–1.9, 3.7–4.0, and 4.0–4.5 times, respectively. The contents of micromycetes and bacteria in the one-month-stored samples were significantly higher than in the fresh pomace. Predrying and sulfitation decreased bacterial contamination, but to a lesser extent compared to micromycetes.
Conclusion. Long-term storage spoiled pomace, leading to significant changes in its chemical composition. Sulfitation reduced microorganism growth during storage, but did not provide long-term preservation (over a month), while pre-drying at 60–65°C promoted longer storage.
Keywords
Winemaking by-products, grape pomace, yeast, bacteria, microflora, storage conditions
REFERENCES
  1. Beres C, Costa GNS, Cabezudo I, da Silva-James NK, Teles ASC, Cruz APG, et al. Towards integral utilization of grape pomace from winemaking process: A review. Waste Management. 2017;68:581–594. https://doi.org/10.1016/j.wasman.2017.07.017.
  2. Zhao X, Zhang S-S, Zhang X-K, He F, Duan C-Q. An effective method for the semi-preparative isolation of high-purity anthocyanin monomers from grape pomace. Food Chemistry. 2020;310. https://doi.org/10.1016/j.foodchem.2019.125830.
  3. Minjares-Fuentes R, Femenia A, Garau MC, Meza-Velázquez JA, Simal S, Rosselló C. Ultrasound-assisted extraction of pectins from grape pomace using citric acid: A response surface methodology approach. Carbohydrate Polymers. 2014;106(1):179–189. https://doi.org/10.1016/j.carbpol.2014.02.013.
  4. Cortés A, Moreira MT, Domínguez J, Lores M, Feijoo G. Unraveling the environmental impacts of bioactive compounds and organic amendment from grape marc. Journal of Environmental Management. 2020:272. https://doi.org/10.1016/j.jenvman.2020.111066.
  5. Sirohi R, Tarafdar A, Singh S, Negi T, Gaur K, Gnansounou E, et al. Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery. Bioresource Technology. 2020;314. https://doi.org/10.1016/j.biortech.2020.123771.
  6. Tikhonova AN, Ageyeva NM. Deep processing of grapes for obtaining the grape food fibers. Nauchnye trudy SeveroKavkazskogo federalʹnogo nauchnogo tsentra sadovodstva, vinogradarstva, vinodeliya [Scientific works of the NorthCaucasian Federal Scientific Center of Horticulture, Viticulture and Winemaking]. 2018;18:180–183. (In Russ.). https://doi.org/10.30679/2587-9847-2018-18-180-183.
  7. Kato-Schwartz CG, Corrêa RCG, de Souza Lima D, de Sá-Nakanishi AB, de Almeida Gonçalves G, Seixas FAV, et al. Potential anti-diabetic properties of Merlot grape pomace extract: An in vitro, in silico and in vivo study of α-amylase and α-glucosidase inhibition. Food Research International. 2020;137. https://doi.org/10.1016/j.foodres.2020.109462.
  8. Beres C, Freitas SP, Godoy RLDO, de Oliveira DCR, Deliza R, Iacomini M, et al. Antioxidant dietary fibre from grape pomace flour or extract: Does it make any difference on the nutritional and functional value? Journal of Functional Foods. 2019;56:276–285. https://doi.org/10.1016/j.jff.2019.03.014.
  9. Glampedaki P, Dutschk V. Stability studies of cosmetic emulsions prepared from natural products such as wine, grape seed oil and mastic resin. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014;460:306–311. https://doi.org/10.1016/j.colsurfa.2014.02.048.
  10. Dabetic NM, Todorovic VM, Djuricic ID, Antic Stankovic JA, Basic ZN, Vujovic DS, et al. Grape seed oil characterization: A novel approach for oil quality assessment. European Journal of Lipid Science and Technology. 2020;122(6). https://doi.org/10.1002/ejlt.201900447.
  11. Mezzasalma V, Sandionigi A, Bruni I, Bruno A, Lovicu G, Casiraghi M, et al. Grape microbiome as a reliable and persistent signature of field origin and environmental conditions in Cannonau wine production. PLoS ONE. 2017;12(9). https://doi.org/10.1371/journal.pone.0184615.
  12. Burʹyan NI. Mikrobiologiya vinodeliya [Microbiology of winemaking]. Simferopolʹ: Tavriya; 2002. 433 p. (In Russ.).
  13. Ageeva NM, Suprun II, Prakh AV. Variety of microorganisms groups living on berries of grapes. Polythematic Online Scientific Journal of Kuban State Agrarian University. 2015;(111):1586–1595. (In Russ.).
  14. Viziteu G-A, Manoliu A, Andor I. Data concerning the yeasts microbiota from Cotnari vineyard. Romanian Biotechnological Letters. 2008;13(2).
  15. Suprun II, Tokmakov SV, Ageeva NM, Prakh AV. Aprobation of genotyping method of wine yeast (genus Saccharomyces) by the analysis of inter-delta genomic region. Polythematic Online Scientific Journal of Kuban State Agrarian University. 2015;(112):484–494. (In Russ.).
  16. Gerzhikova VG. Metody tekhnokhimicheskogo kontrolya v vinodelii [Technochemical control methods in winemaking]. Simferopolʹ: Tavrida; 2009. 304 p. (In Russ.).
  17. Dorosh AP, Gregirchak NN. Investigation of thermal resistance and antagonistic properties of the yeast Saccharomyces cerevisiae. Zhivye i biokosnye sistemy. 2015;(11).
  18. Bizaj E, Cordente A, Bellon JR, Raspor P, Curtin CD, Pretorius IS. A breeding strategy to harness flavor diversity of Saccharomyces interspecific hybrids and minimize hydrogen sulfide production. FEMS Yeast Research. 2012;12(4):456–465. https://doi.org/10.1111/j.1567-1364.2012.00797.x.
  19. Li S, Cheng C, Li Z, Chen J, Yan B, Han B, et al. Yeast species associated with wine grapes in China. International Journal of Food Microbiology. 2010;138(1–2):85–90. https://doi.org/10.1016/j.ijfoodmicro.2010.01.009.
  20. Settanni L, Sannino C, Francesca N, Guarcello R, Moschetti G. Yeast ecology of vineyards within Marsala wine area (western Sicily) in two consecutive vintages and selection of autochthonous Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering. 2012;114(6):606–614. https://doi.org/10.1016/j.jbiosc.2012.07.010.
  21. Schopp LM, Lee J, Osborne JP, Chescheir SC, Edwards CG. Metabolism of nonesterified and esterified hydroxycinnamic acids in red Wines by Brettanomyces bruxellensis. Journal of Agricultural and Food Chemistry. 2013;61(47):11610–11617. https://doi.org/10.1021/jf403440k.
  22. Jara C, Laurie VF, Mas A, Romero J. Microbial terroir in chilean valleys: Diversity of non-conventional yeast. Frontiers in Microbiology. 2016;7. https://doi.org/10.3389/fmicb.2016.00663.
  23. Aiko V, Edamana P, Mehta A. Decomposition and detoxification of aflatoxin B1 by lactic acid. Journal of the Science of Food and Agriculture. 2016;96(6):1959–1966. https://doi.org/10.1002/jsfa.7304.
  24. Şen L, Nas S. Identification of ochratoxigenic fungi and contextual change on dried raisins (Sultanas). Journal of Food, Agriculture and Environment. 2013;11(3–4):155–161.
  25. Steel CC, Blackman JW, Schmidtke LM. Grapevine bunch rots: Impacts on wine composition, quality, and potential procedures for the removal of wine faults. Journal of Agricultural and Food Chemistry. 2013;61(22):5189–5206. https://doi.org/10.1021/jf400641r.
  26. Radovanović VN, Andjelković M, Arsić B, Radovanović A, Gojković-Bukarica L. Cost-effective ultrasonic extraction of bioactive polyphenols from vine and wine waste in Serbia. South African Journal of Enology and Viticulture. 2019;40(2):1–9. https://doi.org/10.21548/40-2-3215.
  27. Mewa-Ngongang M, Du Plessis HW, Ntwampe SKO, Chidi BS, Hutchinson UF, Mekuto L, et al. Grape pomace extracts as fermentation medium for the production of potential biopreservation compounds. Foods. 2019;8(2). https://doi.org/10.3390/foods8020051.
  28. Friedman M. Antibacterial, antiviral, and antifungal properties of wines and winery byproducts in relation to their flavonoid content. Journal of Agricultural and Food Chemistry. 2014;62(26):6025–6042. https://doi.org/10.1021/jf501266s.
  29. Kosel J, Cadež N, Schuller D, Carreto L, Franco-Duarte R, Raspor P. The influence of Dekkera bruxellensis on the transcriptome of Saccharomyces cerevisiae and on the aromatic profile of synthetic wine must. FEMS Yeast Research. 2017;17(4). https://doi.org/10.1093/femsyr/fox018.
  30. Augustine S, Kudachikar VB, Vanajakshi V, Ravi R. Effect of combined preservation techniques on the stability and microbial quality and retention of anthocyanins in grape pomace stored at low temperature. Journal of Food Science and Technology. 2013;50(2):332–338. https://doi.org/10.1007/s13197-011-0325-0.
  31. Tseng A, Zhao Y. Effect of different drying methods and storage time on the retention of bioactive compounds and antibacterial activity of wine grape pomace (Pinot Noir and Merlot). Journal of Food Science. 2012;77(9):H192–H201. https://doi.org/10.1111/j.1750-3841.2012.02840.x.
  32. Zheng Y, Lee C, Yu C, Cheng Y-S, Simmons CW, Zhang R, et al. Ensilage and bioconversion of grape pomace into fuel ethanol. Journal of Agricultural and Food Chemistry. 2012;60(44):11128–11134. https://doi.org/10.1021/jf303509v.
How to quote?
Ageyeva NM, Tikhonova AN, Burtsev BV, Biryukova SA, Globa EV. Grape pomace treatment methods and their effects on storage. Foods and Raw Materials. 2021;9(2):215–223. https://doi.org/10.21603/2308-4057-2021-2-215-223
About journal

Download
Contents
Abstract
Keywords
References