ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Beet pulp dietary fiber exposed to an extremely low-frequency electromagnetic field: detoxification properties

Abstract
Introduction. The lack of dietary fibre in the Russian people diet contributes to the development of various diseases. In this regard, it seems worthwhile to enrich foods with dietary fibre obtained from various types of raw materials. In our experiments, we used beet pulp. This study aimed to develop a technology for obtaining combined dietary fibre using the electrophysical method and evaluate its detoxification properties.
Study objects and methods. Study objects were pectin substances and combined detoxicants from beet pulp obtained by extracting with succinic acid with and without an extremely low-frequency electromagnetic field (ELF EM) treatment. The profiles of combined detoxicants and pectin substances were identified by IR-Fourier spectrometry. Beet pectin, beet cellulose, and their combined detoxicants were tested for complexing (binding) capacity with respect to lead ions (Pb2+). For this, we applied the trilonometric method with some modifications.
Results and discussion. The analysis of the absorption bands of carboxyl groups carbonyls revealed the presence of free carboxyl groups in the combined detoxicants. The combined detoxicant with a 1:0.5 ratio of cellulose and pectin substances showed a high complexing (binding) capacity (601 mg/Pb2+) with respect to lead ions (Pb2+).
Conclusion. We developed a technology for producing combined detoxicants with a high complexing capacity with respect to lead ions analysed microstructures of gels obtained during the interaction between the combined detoxicant and lead acetate solution.
Keywords
Pectin, cellulose, beet, detoxicant, extraction, IR spectra, binding capacity, complexation
FUNDING
This work was financially supported by the Russian Foundation for Basic Research (RFBR) (project No. 18-016-00173).
REFERENCES
  1. Ağar B, Gençcelep H, Saricaoğlu FT, Turhan, S. Effect of sugar beet fibre concentrations on rheological properties of meat emulsions and their correlation with texture profile analysis. Food and Bioproducts Processing. 2016;100:118–131. https://doi.org/10.1016/j.fbp.2016.06.015.
  2. Gyura J, Seres Z, Sakac M, Pajin B, Simovic DS, Jokić A. Production of dietary fibre from sugar beet crops for application in food industry. In: Hertsburg CT, editor. Sugar Beet Crops: Growth, Fertilization and Yield. Nova Science Publishers; 2010. pp. 43–83.
  3. Filipovic N, Djuric M, Gyura J. The effect of the type and quantity of sugar-beet fibers on bread characteristics. Journal of Food Engineering. 2007;78(3):1047–1053. https://doi.org/10.1016/j.jfoodeng.2005.12.050.
  4. Magomedov GO, Zhuravlev AA, Lobosova LA, Zhurakhova SN. Optimization of prescription composition of jelly masses using the scheffe’s symplex plan. Foods and Raw Materials. 2018;6(1):71–78. https://doi.org/10.21603/2308-4057-2018-1-71-78.
  5. Lukʹyanenko MV, Molotilin YuI, Tamova MYu, Kolesnikov VA. Poluchenie pishchevykh volokon iz vtorichnogo syrʹya sveklosakharnogo proizvodstva i ikh ispolʹzovanie v funktsionalʹnykh produktakh pitaniya [Producing dietary fibre from sugar beet processing by-products and their use in functional foods]. Krasnodar: Izdatel’skiy Dom Yug; 2015. 136 p. (In Russ.).
  6. Harland JI. Authorised EU health claim for sugar beet fibre. In: Sadler MJ, editor. Foods, Nutrients and Food Ingredients with Authorised EU Health Claims, Volume 3. Woodhead Publishing; 2018. pp. 113–128. https://doi.org/10.1016/B978-0-08-100922-2.00008-5.
  7. Finkenstadt VL. A Review on the Complete Utilization of the Sugarbeet. Sugar Tech. 2014;16(4):339–346. https://doi.org/10.1007/s12355-013-0285-y.
  8. Grabishin AS. Some features of pectin production technology. New Technologies. 2010;(2):30–34. (In Russ.).
  9. Gadhe KS, Shere DM, Surendar J. Studies on exploration and characterization of dietary fibre extracted from sugar beet (Beta vulgaris L.) and it’s incorporation in cookies. Journal of Pharmacognosy and Phytochemistry. 2017;6(4):956–961.
  10. Berlowska J, Binczarski M, Dziugan P, Wilkowska A, Kregiel D, Witonska I. Sugar Beet Pulp as a Source of Valuable Biotechnological Products. In: Holbsn AM, Grumezescu AM, editors. Advances in Biotechnology for Food Industry. Academic Press; 2018. pp. 359–392. https://doi.org/10.1016/B978-0-12-811443-8.00013-X.
  11. Karnik D, Wicker L. Emulsion stability of sugar beet pectin fractions obtained by isopropanol fractionation. Food Hydrocolloids. 2018;74:249–254. https://doi.org/10.1016/j.foodhyd.2017.07.041.
  12. Liu Z, Pi F, Guo X, Guo X, Yu S. Characterization of the structural and emulsifying properties of sugar beet pectin obtained by sequential extraction. Food Hydrocolloids. 2019;88:31–42. https://doi.org/10.1016/j.foodhyd.2018.09.036.
  13. Huang X, Li D, Wang, L. Characterization of pectin extracted from sugar beet pulp under different drying conditions. Journal of Food Engineering. 2017;211:1–6. https://doi.org/10.1016/j.jfoodeng.2017.04.022.
  14. Pi F, Liu Z, Guo X, Guo X, Meng H. Chicory root pulp pectin as an emulsifier as compared to sugar beet pectin. Part 1: Influence of structure, concentration, counterion concentration. Food Hydrocolloids. 2019;89:792–801. https://doi.org/10.1016/j.foodhyd.2018.11.061.
  15. Almohammed F, Koubaa M, Khelfa A, Nakaya M, Mhemdi H, Vorobiev E. Pectin recovery from sugar beet pulp enhanced by high-voltage electrical discharges. Food and Bioproducts Processing. 2017;103:95–103. https://doi.org/10.1016/j.fbp.2017.03.005.
  16. Huang X, Li D, Wang L. Effect of particle size of sugar beet pulp on the extraction and property of pectin. Journal of Food Engineering. 2018;218:44–49. https://doi.org/10.1016/j.jfoodeng.2017.09.001.
  17. Guo X, Meng H, Zhu S, Tang Q, Pan R, Yu S. Stepwise ethanolic precipitation of sugar beet pectin from the acidic extract. Carbohydrate Polymers. 2016;136:316–321. https://doi.org/10.1016/j.carbpol.2015.09.003.
  18. Guo X, Guo X, Meng H, Zhang B, Yu S. Using the high temperature resistant pH electrode to auxiliarily study the sugar beet pectin extraction under different extraction conditions. Food Hydrocolloids. 2017;70:105–113. https://doi.org/10.1016/j.foodhyd.2017.03.032.
  19. Guo X, Meng H, Zhu S, Zhang T, Yu S. Purifying sugar beet pectin from non-pectic components by means of metal precipitation. Food Hydrocolloids. 2015;51:69–75. https://doi.org/10.1016/j.foodhyd.2015.05.009.
  20. Guo X, Zhang T, Meng H, Yu S. Ethanol precipitation of sugar beet pectin as affected by electrostatic interactions between counter ions and pectin chains. Food Hydrocolloids. 2017;65:187–197. https://doi.org/10.1016/j.foodhyd.2016.11.010.
  21. Guo X, Meng H, Tang Q, Pan R, Zhu S, Yu S. Effects of the precipitation pH on the ethanolic precipitation of sugar beet pectin. Food Hydrocolloids. 2016;52:431–437. https://doi.org/10.1016/j.foodhyd.2015.07.013.
  22. Cappa C, Lucisano M, Mariotti M. Influence of Psyllium, sugar beet fibre and water on gluten-free dough properties and bread quality. Carbohydrate Polymers. 2013;98(2):1657–1666. https://doi.org/10.1016/j.carbpol.2013.08.007.
  23. Nakanisi K. Infrakrasnye spektry i stroenie organicheskikh soedineniy [Infrared spectra and the structure of organic compounds]. Moscow: Mir; 1965. 216 p. (In Russ.).
  24. Donchenko LV. Tekhnologiya pektina i pektinoproduktov [The technology of pectin and pectin products]. Moscow: DeLi; 2000. 255 p. (In Russ.).
  25. Ilʹina IA. Nauchnye osnovy tekhnologii modifitsirovannykh pektinov [Scientific foundations for the technology of modified pectin]. Krasnodar: North-Caucasian Zonal Scientific Research Institute of Horticulture and Viticulture of the Russian Academy of Agricultural Sciences; 2001. 312 p. (In Russ.).
  26. Girma E, Worku T. Extraction and Characterization of Pectin from Selected Fruit Peel Waste. International Journal of Scientific and Research Publications. 2016;6(2):447–454.
  27. Khatko ZN. Razvitie nauchno-prakticheskikh osnov tekhnologii vysokoochishchennogo sveklovichnogo pektina polifunktsionalʹnogo naznacheniya i pektinosoderzhashchikh kompozitsiy [Developing scientific and practical foundations for the technology of producing highly purified beet pectin for multifunctional purposes and pectincontaining compositions]. Dr. eng. sci. diss. Voronezh: Voronezh State University of Engineering Technologies; 2013. 399 p. (In Russ.).
How to quote?
Tamova MYu, Barashkina EV, Tretyakova NR, Zhuravlev RA, Penov ND. Beet pulp dietary fiber exposed to an extremely low-frequency electromagnetic field: detoxification properties. Foods and Raw Materials. 2021;9(1):2–9. https://doi.org/10.21603/2308-4057-2021-1-2-9
About journal

Download
Contents
Abstract
Keywords
Funding
References