ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Instant tea from Condonopsis javanica L. root extract via spray drying

Abstract
Introduction. Codonopsis javanica L. root is a gingsen-like medicinal material with valuable bioactive compounds and alkaloids in its composition. However, the diversification of commercial products from Codonopsis javanica root extract is limited and poorly represented on the market. This study presents a new production process of an instant tea product from Codonopsis javanica root extract, which involved spray drying with maltodextrin as a drying additive.
Study objects and methods. The research featured different process parameters including a drying additive concentration, a drying temperature, and a feed flow rate. Moisture content and drying yield were selected as the main outcomes.
Results and discussion. In general, the improved drying yield was associated with an increased drying additive concentration, a lower drying temperature, and a higher feed flow rate. The best drying yield (78.35%) was obtained at the drying additive concentration of 30% (w/w), the drying temperature of 140°C, and the feed flow rate of 300 mL/h. The total saponin content in the product was 0.29% (w/w), and the ABTS free radical scavenging ability reached 59.48 μgAA/g. The obtained powder was spherical and exhibited fairly uniform particle morphology with shriveled and concave outer surface.
Conclusion. The research results justified the use of Codonopsis javanica as an ingredient in beverage industry and suggested maltodextrin as an appropriate substrate for spray-drying natural extracts.
Keywords
Codonopsis javanica, root extract, instant tea, spray drying, maltodextrin, process optimization, antioxidant activity, saponin
FUNDING
This study was financially supported by Kon Tum Department of Science and Technology, Kon Tum Province, Vietnam.
REFERENCES
  1. Chen K-N, Peng W-H, Hou C-W, Chen C-Y, Chen H-H, Kuo C-H, et al. Codonopsis javanica root extracts attenuate hyperinsulinemia and lipid peroxidation in fructose-fed insulin resistant rats. Journal of Food and Drug Analysis. 2013;21(4):347–355. DOI: https://doi.org/10.1016/j.jfda.2013.08.001.
  2. Hoi TM, Dai DN, Ha CTT, Anh HV, Ogunwande IA. Essential oil constituents from the leaves of Anoectochilus setaceus, Codonopsis javanica and Aristolochia kwangsiensis from vietnam. Records of Natural Products. 2019;13(3):281–286. DOI: https://doi.org/10.25135/rnp.103.18.08.124.
  3. Sun Q-L, Li Y-X, Cui Y-S, Jiang S-L, Dong C-X, Du J. Structural characterization of three polysaccharides from the roots of Codonopsis pilosula and their immunomodulatory effects on RAW264.7 macrophages. International Journal of Biological Macromolecules. 2019;130:556–563. DOI: https://doi.org/10.1016/j.ijbiomac.2019.02.165.
  4. Nguyen X-Q, Le A-D, Nguyen N-P, Nguyen H. Thermal diffusivity, moisture diffusivity, and color change of codonopsis javanica with the support of the ultrasound for drying. Journal of Food Quality. 2019;2019. DOI: https://doi.org/10.1155/2019/2623404.
  5. He J-Y, Ma N, Zhu S, Komatsu K, Li Z-Y, Fu W-M. The genus Codonopsis (Campanulaceae): a review of phytochemistry, bioactivity and quality control. Journal of Natural Medicines. 2015;69(1):1–21. DOI: https://doi.org/10.1007/s11418-014-0861-9.
  6. Ren J, Lin Z, Yuan Z. Tangshenosides from Codonopsis lanceolata roots. Phytochemistry Letters. 2013;6(4):567–569. DOI: https://doi.org/10.1016/j.phytol.2013.07.008.
  7. Lim TK. Codonopsis javanica. In: Lim TK, editor. Edible medicinal and non medicinal plants. Volume 9, Modified Stems, Roots, Bulbs. Dordrecht: Springer; 2015. pp. 870–873. DOI: https://doi.org/10.1007/978-94-017-9511-1_32.
  8. Li C-Y, Xu H-X, Han Q-B, Wu T-S. Quality assessment of Radix Codonopsis by quantitative nuclear magnetic resonance. Journal of Chromatography A. 2009;1216(11):2124–2129. DOI: https://doi.org/10.1016/j.chroma.2008.10.080.
  9. Han AY, Lee YS, Kwon S, Lee HS, Lee K-W, Seol GH. Codonopsis lanceolata extract prevents hypertension in rats. Phytomedicine. 2018;39:119–124. DOI: https://doi.org/10.1016/j.phymed.2017.12.028.
  10. Wang Q, Xu C, Pan K-Y, Hong D-Y. Which family? – morphological and phylogenetic analyses of the enigmatic genus Numaeacampa (Campanulaceae). Kew Bulletin. 2017;72(2). DOI: https://doi.org/10.1007/S12225-017-9701-X.
  11. Wang Q, Zhou S-L, Hong D-Y. Molecular phylogeny of the platycodonoid group (Campanulaceae s. str.) with special reference to the circumscription of Codonopsis. Taxon. 2013;62(3):498–504. DOI: https://doi.org/10.12705/623.2.
  12. Nguyen VTT, Ho TLD, Phan KTA. In vitro propagation of Codonopsis javania (Blume) Hook. f. et Thomson through the callus induction. Science and Technology Development Journal – Natural Sciences. 2018;2(4):56–61. DOI: https://doi.org/10.32508/stdjns.v2i4.810.
  13. Gao S-M, Liu J-S, Wang M, Cao T-T, Qi Y-D, Zhang B-G, et al. Traditional uses, phytochemistry, pharmacology and toxicology of Codonopsis: A review. Journal of Ethnopharmacology. 2018;219:50–70. DOI: https://doi.org/10.1016/j.jep.2018.02.039.
  14. Ijaz S, Haq IU, Babar M. Jukes-cantor evolutionary model based phylogenetic relationship of economically important ornamental palms using maximum likelihood approach. Applied Ecology and Environmental Research. 2019;17(6):14859–14865. DOI: https://doi.org/10.15666/aeer/1706_1485914865.
  15. Park SJ, Seong DH, Park DS, Kim SS, Gou J, Ahn JH, et al. Chemical compositions of fermented Codonopsis lanceolata. Journal of the Korean Society of Food Science and Nutrition. 2009;38(3):396–400. DOI: https://doi.org/10.3746/jkfn.2009.38.3.396.
  16. Sun Y, Liu J. Structural characterization of a water-soluble polysaccharide from the Roots of Codonopsis pilosula and its immunity activity. International Journal of Biological Macromolecules. 2008;43(3):279–282. DOI: https://doi.org/10.1016/j.ijbiomac.2008.06.009.
  17. Nguyen MTT, Awale S, Tezuka Y, Le Tran Q, Watanabe H, Kadota S. Xanthine oxidase inhibitory activity of vietnamese medicinal plants. Biological and Pharmaceutical Bulletin. 2004;27(9):1414–1421. DOI: https://doi.org/10.1248/bpb.27.1414.
  18. Kim S-H, Choi H-J, Chung MJ, Cui C-B, Ham S-S. Antimutagenic and antitumor effects of Codonopsis lanceolata extracts. Journal of the Korean Society of Food Science and Nutrition. 2009;38(10):1295–1301. DOI: https://doi.org/10.3746/jkfn.2009.38.10.1295.
  19. Xue J, Zhang X, Zhang C, Kang N, Liu X, Yu J, et al. Protective effect of Naoxintong against cerebral ischemia reperfusion injury in mice. Journal of Ethnopharmacology. 2016;182:181–189. DOI: https://doi.org/10.1016/j.jep.2016.02.022.
  20. Macchioni F, Carugini S, Cecchi F, Siciliano T, Braca A, Cioni P, et al. Aqueous extract of Codonopsis javanica against larval and pupal stages of Aedes albopictus. Annali della Facoltà di Medicina veterinaria. 2004;57:215–220.
  21. Wang Z, Qi F, Cui Y, Zhao L, Sun X, Tang W, et al. An update on Chinese herbal medicines as adjuvant treatment of anticancer therapeutics. BioScience Trends. 2018;12(3):220–239. DOI: https://doi.org/10.5582/bst.2018.01144.
  22. Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea – A review. Journal of the American College of Nutrition. 2006;25(2):79–99. DOI: https://doi.org/10.1080/07315724.2006.10719518.
  23. Zhang Y-H, Chen G-S, Chen J-X, Liu Z-Q, Yu L-Y, Yin J-F, et al. Effects of β-cyclodextrin and sodium ascorbate on the chemical compositions and sensory quality of instant green tea powder during storage. Journal of Chemistry. 2019;2019. DOI: https://doi.org/10.1155/2019/5618723.
  24. Kalušević AM, Lević SM, Čalija BR, Milić JR, Pavlović VB, Bugarski BM, et al. Effects of different carrier materials on physicochemical properties of microencapsulated grape skin extract. Journal of Food Science and Technology. 2017;54(11):3411–3420. DOI: https://doi.org/10.1007/s13197-017-2790-6.
  25. Jafari SM, Ghalenoei MG, Dehnad D. Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology. 2017;311:59–65. DOI: https://doi.org/10.1016/j.powtec.2017.01.070.
  26. Pham HNT, Tang Nguyen V, Van Vuong Q, Bowyer MC, Scarlett CJ. Bioactive compound yield and antioxidant capacity of Helicteres hirsuta Lour. stem as affected by various solvents and drying methods. Journal of Food Processing and Preservation. 2017;41(1). DOI: https://doi.org/10.1111/jfpp.12879.
  27. Gupta M, Karmakar N, Sasmal S. In vitro antioxidant activity of aqueous and alcoholic extracts of polyherbal formulation consisting of Ficus glomerata Roxb. and Symplocos racemosa Roxb. stem bark assessed in free radical scavenging assays. International Journal of Pharmacognosy and Phytochemical Research. 2017;9(2). DOI: https://doi.org/10.25258/phyto.v9i2.8060.
  28. Fiallos-Jurado J, Pollier J, Moses T, Arendt P, Barriga-Medina N, Morillo E, et al. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves. Plant Science. 2016;250:188–197. DOI: https://doi.org/10.1016/j.plantsci.2016.05.015.
  29. Lan Y, Xu M, Ohm J-B, Chen B, Rao J. Solid dispersion-based spray-drying improves solubility and mitigates beany flavour of pea protein isolate. Food Chemistry. 2019;278:665–673. DOI: https://doi.org/10.1016/j.foodchem.2018.11.074.
  30. Nunes IL, Mercadante AZ. Encapsulation of lycopene using spray-drying and molecular inclusion processes. Brazilian Archives of Biology and Technology. 2007;50(5):893–900. DOI: https://doi.org/10.1590/S1516-89132007000500018.
  31. Jafari SM, Assadpoor E, He Y, Bhandari B. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology. 2008;26(7):816–835. DOI: https://doi.org/10.1080/07373930802135972.
  32. Fernandes RVD, Borges SV, Botrel DA. Influence of spray drying operating conditions on microencapsulated rosemary essential oil properties. Food Science and Technology. 2013;33:171–178.
  33. Cortés-Camargo S, Cruz-Olivares J, Barragán-Huerta BE, Dublán-García O, Román-Guerrero A, Pérez-Alonso C. Microencapsulation by spray drying of lemon essential oil: Evaluation of mixtures of mesquite gum–nopal mucilage as new wall materials. Journal of Microencapsulation. 2017;34(4):395–407. DOI: https://doi.org/10.1080/02652048.2017.1338772.
  34. Jumah RY, Tashtoush B, Shaker RR, Zraiy AF. Manufacturing parameters and quality characteristics of spray dried jameed. Drying Technology. 2000;18(4–5):967–984. DOI: https://doi.org/10.1080/07373930008917747.
  35. Dantas D, Pasquali MA, Cavalcanti-Mata M, Duarte ME, Lisboa HM. Influence of spray drying conditions on the properties of avocado powder drink. Food Chemistry. 2018;266:284–291. DOI: https://doi.org/10.1016/j.foodchem.2018.06.016.
  36. Alves SF, Borges LL, dos Santos TO, de Paula JR, Conceição EC, Bara MTF. Microencapsulation of essential oil from fruits of Pterodon emarginatus using gum arabic and maltodextrin as wall materials: composition and stability. Drying Technology. 2014;32(1):96–105. DOI: https://doi.org/10.1080/07373937.2013.816315.
  37. Tomazelli Júnior O, Kuhn F, Padilha PJM, Vicente LRM, Costa SW, Boligon AA, et al. Microencapsulation of essential thyme oil by spray drying and its antimicrobial evaluation against Vibrio alginolyticus and Vibrio parahaemolyticus. Brazilian Journal of Biology. 2017;78(2):311–317. DOI: https://doi.org/10.1590/1519-6984.08716.
  38. Rubiano KD, Cárdenas JA, Ciro VHJ. Encapsulation of d-limonene flavors using spray drying: Effect of the addition of emulsifiers. Ingeniería y competitividad. 2015;17(2):77–89.
  39. Vergara C, Pino MT, Zamora O, Parada J, Pérez R, Uribe M, et al. Microencapsulation of anthocyanin extracted from purple flesh cultivated potatoes by spray drying and its effects on in vitro gastrointestinal digestion. Molecules. 2020;25(3). DOI: https://doi.org/10.3390/molecules25030722.
How to quote?
Nhan NPT, Vu ND, Thanh LV, Phuong TTM, Bach LG, Toan TQ. Instant tea from Condonopsis javanica L. root extract via spray drying. Foods and Raw Materials. 2020;8(2):385–391. DOI: http://doi.org/10.21603/2308-4057-2020-2-385-391
About journal

Download
Contents
Abstract
Keywords
Funding
References