ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Effects of encapsulated green coffee extract and canola oil on liquid kashk quality

Abstract
In this study, we used a water-in-oil (W/O) emulsion encapsulation technique to enhance green coffee extract in the novel kashk product and protect it against hot filling. Green coffee extracts (GCE) in free (1%, 0.5%, and 0.25%) and encapsulated form (EGCE) (5%, 2.5%, and 1.25%) were added to kashk during hot filling, and their physicochemical and sensory properties were investigated. The EGCE kashk had higher oxidative stability (0.43 h) than the control due to the extract’s high phenolic content and DPPH radical scavenging activity (74%). Although a high concentration of GCE caused a higher pH (4.02), the latter declined in all the samples during the storage period. Further, the size of droplets in the emulsion varied from 3.20 to 8.51 μm, confirming the well-encapsulated GCE by Fourier transform infrared. In addition, palmitic acid and oleic acid were detected in GCE by gas chromatography as the main saturated and unsaturated fatty acids, respectively. All the treatments had similar rheological properties and the highest flow index was observed in the samples with EGCE 5% on day 60. The sensory evaluation showed that the assessors preferred the kashk formulated with 1% GCE. Finally, GCE encapsulation protected the color of the samples, and the b* value remained unchanged, whereas the lightness (L*) increased. We suggest that a W/O emulsion is a successful technique for GCE encapsulation in kashk and can offer the latter to consumers as an alternative type of flavored dairy product with a better shelf life and health benefits.
Keywords
Antioxidant activity, encapsulation, green coffee extract, kashk, rheological properties
REFERENCES
  1. Adam F, Abert-Vian M, Peltier G, Chemat F. “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresource Technology. 2012;114:457–465. DOI: https://doi.org/10.1016/j.biortech.2012.02.096.
  2. Aguiar J, Estevinho BN, Santos L. Microencapsulation of natural antioxidants for food application – The specific case of coffee antioxidants – A review. Trends in Food Science & Technology. 2016;58:21–39. DOI: https://doi.org/10.1016/j.tifs.2016.10.012.
  3. Zain MZM, Baba AS, Shori AB. Effect of polyphenols enriched from green coffee bean on antioxidant activity and sensory evaluation of bread. Journal of King Saud University Science. 2018;30(2):278–282. DOI: https://doi.org/10.1016/j.jksus.2017.12.003.
  4. Budryn G, Zaczynska D, Oracz J. Effect of addition of green coffee extract and nanoencapsulated chlorogenic acids on aroma of different food products. LWT – Food Science and Technology. 2016;73:197–204. DOI: https://doi.org/10.1016/j.lwt.2016.06.019.
  5. Dziki D, Gawlik-Dziki U, Pecio L, Rozylo R, Swieca M, Krzykowski A, et al. Ground green coffee beans as a functional food supplement – Preliminary study. LWT – Food Science and Technology. 2015;63(1):691–699. DOI: https://doi.org/10.1016/j.lwt.2015.03.076.
  6. Bisht S, Sisodia S. Coffea arabica: A wonder gift to medical science. Journal of Natural Pharmaceuticals. 2010;1(1): 58–62. DOI: https://doi.org/10.4103/2229-5119.73595.
  7. Bidchol AM, Wilfred A, Abhijna P, Harish R. Free radical scavenging activity of aqueous and ethanolic extract of Brassica oleracea L. var. italica. Food and Bioprocess Technology. 2011;4(7):1137–1143. DOI: https://doi.org/10.1007/s11947-009-0196-9.
  8. Chatterjee D, Bhattacharjee P. Comparative evaluation of the antioxidant efficacy of encapsulated and un-encapsulated eugenol-rich clove extracts in soybean oil: Shelf-life and frying stability of soybean oil. Journal of Food Engineering. 2013;117(4):545–550. DOI: https://doi.org/10.1016/j.jfoodeng.2012.11.016.
  9. Ezhilarasi PN, Indrani D, Jena BS, Anandharamakrishnan C. Freeze drying technique for microencapsulation of Garcinia fruit extract and its effect on bread quality. Journal of Food Engineering. 2013;117(4):513–520. DOI: https://doi.org/10.1016/j.jfoodeng.2013.01.009.
  10. Martins A, Barros L, Carvalho AM, Santos-Buelga C, Fernandes IP, Barreiro F, et al. Phenolic extracts of Rubus ulmifolius Schott flowers: characterization, microencapsulation and incorporation into yogurts as nutraceutical sources. Food and Function. 2014;5(6):1091–1100. DOI: https://doi.org/10.1039/c3fo60721f.
  11. Silva PI, Stringheta PC, Teofilo RF, de Oliveira IRN. Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering. 2013;117(4):538–544. DOI: https://doi.org/10.1016/j.jfoodeng.2012.08.039.
  12. Ballesteros LF, Ramirez MJ, Orrego CE, Teixeira JA, Mussatto SI. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry. 2017;237:623–631. DOI: https://doi.org/10.1016/j.foodchem.2017.05.142.
  13. Getachew AT, Chun BS. Optimization of coffee oil flavor encapsulation using response surface methodology. LWT – Food Science and Technology. 2016;70:126–134. DOI: https://doi.org/10.1016/j.lwt.2016.02.025.
  14. Palupi NW, Praptiningsih Y. Oxidized tapioca starch as an alginate substitute for encapsulation of antioxidant from coffee residue. International Conference on Food, Agriculture and Natural Resources, Ic-Fanres 2015. 2016;9: 304–308. DOI: https://doi.org/10.1016/j.aaspro.2016.02.136.
  15. Tran T, Green NL, Ghosh S, Rousseau D. Encapsulation of water-in-oil emulsion droplets within crystal spheroids. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017;524:1–7. DOI: https://doi.org/10.1016/j.colsurfa.2016.12.054.
  16. Ribeiro A, Ruphuy G, Lopes JC, Dias MM, Barros L, Barreiro F, et al. Spray-drying microencapsulation of synergistic antioxidant mushroom extracts and their use as functional food ingredients. Food Chemistry. 2015;188:612–618. DOI: https://doi.org/10.1016/j.foodchem.2015.05.061.
  17. Golmakani MT, Rezaei K, Mazidi S, Razavi SH. γ-Linolenic acid production by Arthrospira platensis using different carbon sources. European Journal of Lipid Science and Technology. 2012;114(3):306–314. DOI: https://doi.org/10.1002/ejlt.201100264.
  18. Fantoni CM, Cuccio AP, Barrera-Arellano D. Brazilian encapsulated fish oils: Oxidative stability and fatty acid composition. Journal of the American Oil Chemists Society. 1996;73(2):251–253. DOI: https://doi.org/10.1007/bf02523904.
  19. Chang PR, Yu JG, Ma XF. Preparation of porous starch and its use as a structure-directing agent for production of porous zinc oxide. Carbohydrate Polymers. 2011;83(2):1016–1019. DOI: https://doi.org/10.1016/j.carbpol.2010.08.076.
  20. Demirel Z, Yilmaz-Koz FF, Karabay-Yavasoglu UN, Ozdemir G, Sukatar A. Antimicrobial and antioxidant activity of brown algae from the Aegean sea. Journal of the Serbian Chemical Society. 2009;74(6):619–628. DOI: https://doi.org/10.2298/jsc0906619d.
  21. Naidu MM, Sulochanamma G, Sampathu SR, Srinivas P. Studies on extraction and antioxidant potential of green coffee. Food Chemistry. 2008;107(1):377–384. DOI: https://doi.org/10.1016/j.foodchem.2007.08.056.
  22. Alothman M, Bhat R, Karim AA. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chemistry. 2009;115(3):785–788. DOI: https://doi.org/10.1016/j.foodchem.2008.12.005.
  23. Farah A, Donangelo CM. Phenolic compounds in coffee. Brazilian Journal of Plant Physiology. 2006;18(1):23–36. DOI: https://doi.org/10.1590/S1677-04202006000100003.
  24. Jeszka-Skowron M, Stanisz E, De Pena MP. Relationship between antioxidant capacity, chlorogenic acids and elemental composition of green coffee. LWT – Food Science and Technology. 2016;73:243–250. DOI: https://doi.org/10.1016/j.lwt.2016.06.018.
  25. Naik GH, Priyadarsini KI, Satav JG, Banavalikar MM, Sohoni DP, Biyani MK, et al. Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochemistry. 2003;63(1):97–104. DOI: https://doi.org/10.1016/s0031-9422(02)00754-9.
  26. Yashin A, Yashin Y, Wang JY, Nemzer B. Antioxidant and antiradical activity of coffee. Antioxidants. 2013;2(4): 230–245. DOI: https://doi.org/10.3390/antiox2040230.
  27. Brezova V, Slebodova A, Stasko A. Coffee as a source of antioxidants: An EPR study. Food Chemistry. 2009;114(3):859–868. DOI: https://doi.org/10.1016/j.foodchem.2008.10.025.
  28. Sainsbury J, Grypa R, Ellingworth J, Duodu KG, De Kock HL. The effects of antioxidants and shelf life conditions on oxidation markers in a sunflower oil salad dressing emulsion (SOSDE). Food Chemistry. 2016;213:230–237. DOI: https://doi.org/10.1016/j.foodchem.2016.06.081.
  29. Karim FT, Ghafoor K, Ferdosh S, Al-Juhaimi F, Ali E, Bin Yunus K, et al. Microencapsulation of fish oil using supercritical antisolvent process. Journal of Food and Drug Analysis. 2017;25(3):654–666. DOI: https://doi.org/10.1016/j.jfda.2016.11.017.
  30. Ifeduba EA, Akoh CC. Microencapsulation of stearidonic acid soybean oil in complex coacervates modified for enhanced stability. Food Hydrocolloids. 2015;51:136–145. DOI: https://doi.org/10.1016/j.foodhyd.2015.05.008.
  31. Carvalho AGS, Silva VM, Hubinger MD. Microencapsulation by spray drying of emulsified green coffee oil with two-layered membranes. Food Research International. 2014;61:236–245. DOI: https://doi.org/10.1016/j.foodres.2013.08.012.
  32. Zhong JF, Yang R, Cao XY, Liu X, Qin XL. Improved physicochemical properties of yogurt fortified with fish oil/γ-oryzanol by nanoemulsion technology. Molecules. 2018;23(1). DOI: https://doi.org/10.3390/molecules23010056.
  33. Robert P, Fredes C. The encapsulation of anthocyanins from berry-type fruits. Trends in foods. Molecules. 2015;20(4):5875–5888. DOI: https://doi.org/10.3390/molecules20045875.
  34. Wang W, Waterhouse GIN, Sun-Waterhouse D. Co-extrusion encapsulation of canola oil with alginate: Effect of quercetin addition to oil core and pectin addition to alginate shell on oil stability. Food Research International. 2013;54(1):837–851. DOI: https://doi.org/10.1016/j.foodres.2013.08.038.
  35. Lee Y-K, Al Mijan M, Ganesan P, Yoo S, Kwak H-S. The physicochemical properties of yoghurt supplemented with microencapsulated peanut sprout extract, a possible functional ingredient. International Journal of Dairy Technology. 2013;66(3):417–423. DOI: https://doi.org/10.1111/1471-0307.12047.
  36. Alavi N, Golmakani MT. Improving oxidative stability of virgin olive oil by addition of microalga Chlorella vulgaris biomass. Journal of Food Science and Technology-Mysore. 2017;54(8):2464–2473. DOI: https://doi.org/10.1007/s13197-017-2689-2.
  37. Chuyen HV, Nguyen MH, Roach PD, Golding JB, Parks SE. Microwave-assisted extraction and ultrasound-assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts. Food Science & Nutrition. 2018;6(1):189–196. DOI: https://doi.org/10.1002/fsn3.546.
  38. Marhamatizadeh MH, Ehsandoost E, Gholami P. The effect of coffee extract on the growth and viability of Lactobacillus acidophilus and Bifidobacterium bifidum in probiotic milk and yoghurt. Journal of Food Biosciences and Technology. 2014;4(1):37–48.
  39. Jafari SM, Assadpoor E, He YH, Bhandari B. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology. 2008;26(7):816–835. DOI: https://doi.org/10.1080/07373930802135972.
  40. Fuchs M, Turchiuli C, Bohin M, Cuvelier ME, Ordonnaud C, Peyrat-Maillard MN, et al. Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. Journal of Food Engineering. 2006;75(1):27–35. DOI: https://doi.org/10.1016/j.jfoodeng.2005.03.047.
  41. Soottitantawat A, Bigeard F, Yoshii H, Furuta T, Ohkawara M, Linko P. Influence of emulsion and powder size on the stability of encapsulated D-limonene by spray drying. Innovative Food Science & Emerging Technologies. 2005;6(1):107–114. DOI: https://doi.org/10.1016/j.ifset.2004.09.003.
  42. Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry. 2017;34:540–560. DOI: https://doi.org/10.1016/j.ultsonch.2016.06.035.
  43. Sun-Waterhouse D, Zhou J, Miskelly GM, Wibisono R, Wadhwa SS. Stability of encapsulated olive oil in the presence of caffeic acid. Food Chemistry. 2011;126(3):1049–1056. DOI: https://doi.org/10.1016/j.foodchem.2010.11.124.
  44. Mir Z, Goonewardene LA, Okine E, Jaegar S, Scheer HD. Effect of feeding canola oil on constituents, conjugated linoleic acid (CLA) and long chain fatty acids in goats milk. Small Ruminant Research. 1999;33(2):137–143. DOI: https://doi.org/10.1016/s0921-4488(99)00016-4.
  45. Dubois V, Breton S, Linder M, Fanni J, Parmentier M. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. European Journal of Lipid Science and Technology. 2007;109(7):710–732. DOI: https://doi.org/10.1002/ejlt.200700040.
  46. Donmez O, Mogol BA, Gokmen V. Syneresis and rheological behaviors of set yogurt containing green tea and green coffee powders. Journal of Dairy Science. 2017;100(2):901–907. DOI: https://doi.org/10.3168/jds.2016-11262.
  47. Rodrigues RAF, Grosso CRF. Cashew gum microencapsulation protects the aroma of coffee extracts. Journal of Microencapsulation. 2008;25(1):13–20. DOI: https://doi.org/10.1080/02652040701725486.
  48. Gurkan H, Hayaloglu AA. Volatiles and sensory characteristics of yogurt manufactured by incorporating basil (Ocimum basilicum L.). International Journal of Food Properties. 2017;20:S779–S789. DOI: https://doi.org/10.1080/10942912.2017.1311344.
How to quote?
Rahpeyma E, Sekhavatizadeh SS. Effects of encapsulated green coffee extract and canola oil on liquid kashk quality. Foods and Raw Materials. 2020;8(1):40–51. DOI: http://doi.org/10.21603/2308-4057-2020-1-40-51
About journal

Download
Contents
Abstract
Keywords
References