ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Biological value of semi-smoked sausages with cedar oil cake

Abstract
Introduction. Development of novel meat products with better quality and biological value remains one of priority objectives of modern food industry. New meat products correspond with the principles of healthy diet due to their improved fatty acid profile and lower sodium content. The present research featured semi-smoked sausages with 15% of cedar oilcake and a low-sodium curing mix. The cedar nut oilcake is as a source of highly unsaturated fatty acids and high-grade protein. In addition to the physiological effect, the low-sodium curing mix increases the resistance of the combined fat phase to deterioration during storage.
Study objects and methods. Sausages of control and experimental formulations were made in laboratory conditions. The control formulation included raw second-grade beef, semi-fat pork (30% of fat), and traditional curing ingredients, i.e. sodium chloride and nitrite curing mix. In the experimental formulation, 15% of the semi-fat pork was replaced by cedar oil cake, and 30% of sodium chloride – by magnesium chloride. The samples were tested for fatty and amino acid composition, biological value of the lipid and protein phase, chemical composition, as well as physical, chemical, and sensory properties. Other research data included water activity, as well as acid, peroxide, and thiobarbituric value during storage at a temperature of 4 ± 2°C for 15 days.
Results and discussion. The study of fatty acid composition showed significant differences in the ratio of saturated (SFA), monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA, P ˂ 0.05) in the samples. When 15% of pork was replaced by cedar oilcake, the amount of SFA decreased by 19.8%, while the content of MUFA and PUFA increased by 10.2% and 24.9%, respectively. These changes improved the indices of atherogenicity and thrombogenicity. The quality of the protein component also improved, as the utility coefficient of amino acids increased from 0.83 to 0.87, and the coefficient of comparable redundancy decreased from 7.2 g/100 g of protein to 5.35 g/100 g of protein. The sausages with cedar oil cake and low sodium chloride content received a high consumer evaluation. The hydrolysis of the lipid fraction was the same in both samples. The process of lipid oxidation was inhibited, which can partially be explained by a lower water activity.
Conclusion. The biological value, consumer quality, and storage stability of semi-smoked sausages could be improved by replacing fat-containing meat raw materials with cedar oil cake and reducing sodium chloride content. The new product demonstrated a better nutrition quality and can be recommended for mass production.
Keywords
Meat products, formulations, fatty acid composition, sodium, lipid oxidation, water activity
REFERENCES
  1. Lisitsyn AB, Semenova AA, Kuznetsova TG, Dydykin AS, Nasonova VV. Study of the effect of sex and type of muscles on the development of quality defects in turkey meat after the slaughter. Foods and Raw Materials. 2018;6(1):63–70. DOI: https://doi.org/10.21603/2308-4057-2018-1-63-70.
  2. Kozyrev IV, Mittelshtein TM, Pchelkina VA, Kuznetsova TG, Lisitsyn AB. Marbled beef quality grades under various ageing conditions. Foods and Raw Materials. 2018;6(2):429–437. DOI: https://doi.org/10.21603/2308-4057-2018-2-429-437.
  3. Lisitsyn AB, Chernukha IM, Lunina OI. Fatty acid composition of meat from various animal species and the role of technological factors in trans-isomerization of fatty acids. Foods and Raw Materials. 2017;5(2):54–61. DOI: https://doi.org/10.21603/2308-4057-2017-2-54-61.
  4. Analiz rynka kolbasnykh izdeliy i myasnykh delikatesov v Rossii v 2014–2018 gg, prognoz na 2019–2023 gg [Market analysis of sausages and meat specialties in Russia in 2014–2018, forecast for 2019–2023] [Internet]. [cited 2019 Oct 5]. Available from: https://marketing.rbc.ru/research/38824/.
  5. Estevez M. Oxidative damage to poultry: from farm to fork. Poultry Science. 2015;94(6):1368–1378. DOI: https://doi.org/10.3382/ps/pev094.
  6. Khan MI, Jo C, Tariq MR. Meat flavor precursors and factors influencing flavor precursors – A systematic review. Meat Science. 2015;110:278–284. DOI: https://doi.org/10.1016/j.meatsci.2015.08.002.
  7. Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, et al. Fat deposition, fatty acid composition and meat quality: A review. Meat Science. 2008;78(4):343–358. DOI: https://doi.org/10.1016/j.meatsci.2007.07.019.
  8. Prosekov AYu, Dyshlyuk LS, Milentyeva IS, Sykhikh SA, Babich OO, Ivanova SA, et al. Antioxidant and antimicrobial activity of bacteriocin-producing strains of lactic acid bacteria isolated from the human gastrointestinal tract. Progress in Nutrition. 2017;19(1):67–80. DOI: https://doi.org/10.23751/pn.v19i1.5147.
  9. de Almeida PL, de Lima SN, Costa LL, de Oliveira CC, Damasceno KA, dos Santos BA, et al. Effect of jabuticaba peel extract on lipid oxidation, microbial stability and sensory properties of Bologna-type sausages during refrigerated storage. Meat Science. 2015;110:9–14. DOI: https://doi.org/10.1016/j.meatsci.2015.06.012.
  10. Hautrive TP, Piccolo J, Rodrigues AS, Campagnol PCB, Kubota EH. Effect of fat replacement by chitosan and golden flaxseed flour (wholemeal and defatted) on the quality of hamburgers. LWT. 2019;102:403–410. DOI: https://doi.org/10.1016/j.lwt.2018.12.025.
  11. Alejandre M, Poyato C, Ansorena D, Astiasarán I. Linseed oil gelled emulsion: A successful fat replacer in dry fermented sausages. Meat Science. 2016;121:107–113. DOI: https://doi.org/10.1016/j.meatsci.2016.05.010.
  12. Lee H-J, Jung E-H, Lee S-H, Kim J-H, Lee J-J, Choi Y-I. Effect of replacing pork fat with vegetable oils on quality properties of emulsion-type pork sausages. Korean Journal for Food Science of Animal Resources. 2015;35(1): 130–136. DOI: https://doi.org/10.5851/kosfa.2015.35.1.130.
  13. Juárez M, Dugan MER, Aldai N, Basarab JA, Baron VS, McAllister TA, et al. Beef quality attributes are affected by increasing the intramuscular levels of vitamin E and omega-3 fatty acids. Meat Science. 2012;90(3):764–769. DOI: https://doi.org/10.1016/j.meatsci.2011.11.010.
  14. Baek KH, Utama DT, Lee SG, An BK, Lee SK. Effects of replacing pork back fat with canola and flaxseed oils on physicochemical properties of emulsion sausages from spent layer meat. Asian-Australasian Journal of Animal Sciences. 2016;29(6):865–871. DOI: https://doi.org/10.5713/ajas.15.1050.
  15. Heck RT, Vendruscolo RG, Etchepare MA, Cichoski AJ, de Menezes CR, Barin JS, et al. It is possible to produce a low-fat burger with a healthy n-6/n-3 PUFA ratio without affecting the technological and sensory properties? Meat Science. 2017;130:16–25. DOI: https://doi.org/10.1016/j.meatsci.2017.03.010.
  16. Muguerza E, Ansorena D, Gimeno O, Astiasarán I. Nutritional advantages of dry fermented sausages elaborated with vegetable oils. 48th International Congress of Meat Science and Technology(ICoMST 2002); 2002. Rome. Rome, 2002. p. 1012–1013.
  17. Muguerza E, Fista G, Ansorena D, Astiasarán I, Bloukas JG. Effect of fat level and partial replacement of pork backfat with olive oil on processing and quality characteristics of fermented sausages. Meat Science. 2002;61(4):397–404. DOI: https://doi.org/10.1016/S0309-1740(01)00210-8.
  18. Utrilla MC, García Ruiz A, Soriano A. Effect of partial replacement of pork meat with an olive oil organogel on the physicochemical and sensory quality of dry-ripened venison sausages. Meat Science. 2014;97(4):575–582. DOI: https://doi.org/10.1016/j.meatsci.2014.03.001.
  19. Yum H-W, Seo J-K, Jeong J-Y, Kim G-D, Rahman MS, Yang H-S. The quality improvement of emulsion-type pork sausages formulated by substituting pork back fat with rice bran oil. Korean Journal for Food Science of Animal Resources. 2018;38(1):123–134. DOI: https://doi.org/10.5851/kosfa.2018.38.1.123.
  20. Interim summary of conclusions & dietary recommendations on total fat and fatty acids. Geneva: WHO; 2008. pp 1–14.
  21. Utama DT, Jeong HS, Kim J, Barido FH, Lee SK. Fatty acid composition and quality properties of chicken sausage formulated with pre-emulsified perilla-canola oil as an animal fat replacer. Poultry Science. 2019;98(7):3059–3066. DOI: https://doi.org/10.3382/ps/pez105.
  22. Wang X, Xie Y, Li X, Liu Y, Yan W. Effects of partial replacement of pork back fat by a camellia oil gel on certain quality characteristics of a cooked style Harbin sausage. Meat Science. 2018;146:154–159. DOI: https://doi.org/10.1016/j.meatsci.2018.08.011.
  23. Malekian F, Khachaturyan M, Gebrelul S, Henson JF. Composition and fatty acid profile of goat meat sausages with added rice bran. International Journal of Food Science. 2014;2014. DOI: https://doi.org/10.1155/2014/686298.
  24. Saricoban C, Yılmaz MT, Karakaya M. Response surface methodology study on the optimization of effects of fat, wheat bran and salt on chemical, textural and sensory properties of patties. Meat Science. 2009;83(4):610–619. DOI: https://doi.org/10.1016/j.meatsci.2009.07.010.
  25. Talukder S, Sharma DP. Development of dietary fiber rich chicken meat patties using wheat and oat bran. Journal of Food Science and Technology. 2010;47(2):224–229. DOI: https//:doi.org/10.1007/s13197-010-0027-z.
  26. Ozboy Ozbaş O, Ardiç M. Dietary fibers as functional ingredients in meat products. Harran University Journal of the Faculty of Veterinary Medicine. 2016;5(2):184–189.
  27. Choi M-S, Choi Y-S, Kim H-W, Hwang K-E, Song D-H, Lee S-Y, et al. Effects of replacing pork back fat with brewer’s spent grain dietary fiber on quality characteristics of reduced-fat chicken sausages. Korean Journal for Food Science of Animal Resources. 2014;34(2):158–165. DOI: https://doi.org/10.5851/kosfa.2014.34.2.158.
  28. Sofi SA, Singh J, Rafiq S, Rashid R. Fortification of dietary fiber ingriedents in meat application: A review. International Journal of Biochemistry Research & Review. 2017;19(2):1–14. DOI: https://doi.org/10.9734/IJBCRR/2017/36561.
  29. Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez-Álvarez JA. Effect of orange dietary fibre, oregano oil and packaging conditions on shelf-life of bologna sausages. Food Control. 2010;21(4):436–443. DOI: https://doi.org/10.1016/j.foodcont.2009.07.004.
  30. Ham Y-K, Hwang K-E, Kim H-W, Song D-H, Kim Y-J, Choi Y-S, et al. Effects of fat replacement with a mixture of collagen and dietary fiber on small calibre fermented sausages. International Journal of Food Science and Technology. 2016;51(1):96–104. DOI: https://doi.org/10.1111/ijfs.12960.
  31. Sánchez-Zapata E, Díaz-Vela J, Pérez-Chabela ML, Pérez-Alvarez JA, Fernández-López J. Evaluation of the effect of tiger nut fiber as a carrier of unsaturated fatty acids rich oil on the quality of dry-cured sausages. Food Bioprocess Technology. 2013;6(5):1181–1190. DOI: https://doi.org/10.1007/s11947-011-0733-1.
  32. Ores JC, Vieira DC, Fonseca RAS, Schneider C, Espírito Santo MLP. Wheat dietary fiber-added to low-fat semi-dry fermented buffalo sausage: proximate composition, physical-chemical, microbiological and sensory characteristics. International Food Research Journal. 2018;25(4):1733–1744.
  33. Lorenzo JM, Pateiro M, Fontán MCG, Carballo J. Effect of fat content on physical, microbial, lipid and protein changes during chill storage of foal liver pâté. Food Chemistry. 2014;155:57–63. DOI: https://doi.org/10.1016/j.foodchem.2014.01.038.
  34. Mao X, Hua Y. Composition, structure and functional properties of protein concentrates and isolates produced from walnut (Juglans regia L.). International Journal of Molecular Sciences. 2012;13(2):1561–1581. DOI: https://doi.org/10.3390/ijms13021561.
  35. Subbotina MA. Nauchnoe obosnovanie i prakticheskaya realizatsiya tekhnologiy molochnykh produktov s ispolʹzovaniem semyan sosny kedrovoy sibirskoy [Scientific substantiation and practical implementation of dairy products technologies using Siberian pine seeds]. Dr. eng. sci. diss. Kemerovo: Kemerovo Technological Institute of Food Industry; 2012. 436 p.
  36. Gurinovitch GV, Subbotina MA, Gargaeva AG. Use of cedar nut oilcake in technology of pates. Meat Industry. 2013;(7):36–40. (In Russ.).
  37. Prosekov AYu, Dyshlyuk LS, Milent’eva IS, Pavsky VA, Ivanova SA, Garmashov SY. Study of the biofunctional properties of cedar pine oil with the use of in vitro testing cultures. Foods and Raw Materials. 2018;6(1):136–143. DOI: https://doi.org/10.21603/2308-4057-2018-1-136-143.
  38. Sodium intake for adults and children. Guideline [Internet]. [cited 2019 Oct 5]. Available from: https://www.who.int/nutrition/publications/guidelines/sodium_intake/en/.
  39. Ulbritcth TLV, Southgate DAT. Coronary heart disease: seven dietary factors. The Lancet. 1991;338(8773):985–992. DOI: https://doi.org/10.1016/0140-6736(91)91846-M.j
  40. Chernukha IM, Ortova ON, Mkrtichan VS. Estimation of functional properties of meat on indexes of atherogenous and trombogenous. Storage and Processing of Farm Products. 2007;(4). (In Russ.).
  41. Khaksar R, Moslemy M, Hosseini H, Taslimi A, Ramezani A, Miri Z, et al. Comparison of lipid changes in chicken frankfurters made by soybean and canola oils during storage. Iranian Journal of Veterinary Research. 2010;11(2): 154–163. DOI: https://doi.org/10.22099/ijvr.2010.159.
  42. Aleynikov AK, Fatyanov EV, Evteyev AV. Design of the unit for determination of water activity in food by means of cryoscopic method. The Agrarian Scientific Journal. 2013;(8):38–41. (In Russ.).
  43. Donskova LA, Belyaev NM, Leiberova NV. Fatty-acid composition of lipids as functional purpose indicator of poultry meat products from: theoretical and practical aspects. Food Industry. 2018;3(1):4–10. (In Russ.).
  44. Ercoskun H, Demirci-ErcoSkun T. Walnut as fat replacer and functional component in sucuk. Journal of Food Quality. 2010;33(5):646–659. DOI: https://doi.org/10.1111/j.1745-4557.2010.00341.x.
How to quote?
Gurinovich GV, Patrakova IS, Seregin SA, Gargaeva AG, Alekseevnina OYa, Myshalova OM, et al. Biological value of semi-smoked sausages with cedar oil cake. Foods and Raw Materials. 2020;8(1):30–39. DOI: http://doi.org/10.21603/2308-4057-2020-1-30-39
About journal

Download
Contents
Abstract
Keywords
References