ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Specialized hypocholesterolemic foods: Ingredients, technology, effects

Abstract
Introduction. Overweight and obesity are leading risk factors for metabolic syndrome (MS). From 20 to 35% of Russian people have this condition, depending on their age. MS is a precursor of cardiovascular disease, diabetes mellitus, diabetic nephropathy, and nonalcoholic steatohepatitis. Specialized foods (SFs) with hypocholesteremic effects are an important component of the diet therapy for MS patients. Creating local SFs to optimize the nutritional status of MS patients and prevent related diseases is a highly promising area of research. The aim of our study was to develop the formulation and technology of SFs and evaluate their effectiveness in MS treatment.
Study objects and methods. The objects of the study were food ingredients and SFs. Safety indicators and micronutrient contents were determined by standard methods, whereas nutritional and energy values and amino acid contents were determined by calculation.
Results and discussion. Based on medical requirements, we selected functional ingredients and developed a formulation and technology of SFs with an optimized protein, fat, and carbohydrate composition. The formulation included essential micronutrients and biologically active substances with a desirable physiological effect. Clinical trials involved 15 MS patients aged from 27 to 59. For two weeks, they had a low-calorie standard diet with one serving of SFs in the form of a drink instead of a second breakfast. The patients showed a significant improvement in anthropometric indicators. Blood serum tests revealed decreased contents of total cholesterol (by 16.9%), low-density lipoprotein cholesterol (by 15.3%), and triglycerides (by 27.9%).
Conclusion. We developed technical specifications and produced a pilot batch of SFs. The trials showed an improvement of lipid metabolism in the MS patients who were taking SFs as part of their diet therapy.
Keywords
Metabolic syndrome, specialized food, food ingredients, diet therapy
FUNDING
The preparation of the manuscript was subsidised by the Programme of Fundamental Research of State Academies of Sciences for 2013-2020 (Project No. 0529-2019-0055).
REFERENCES
  1. Roytberg GE. Metabolicheskiy sindrom [Metabolic syndrome]. Moscow: MED-press-inform; 2007. 224 p. (In Russ.).
  2. Alekseeva NS. Interrelations between vitamin D and components of metabolic syndrome. Nutrition. 2016;6(3):38–42. (In Russ.). DOI: https://doi.org/10.20953/2224-5448-2016-3-38-42.
  3. Alekseeva NS. Enhancement of the effectiveness of treatment of metabolic syndrome. Nutrition. 2016;6(1):20–27. (In Russ.). DOI: https://doi.org/10.20953/2224-5448-2016-1-20-27.
  4. Boden-Albala B, Sacco RL, Lee HS, Grahame-Clarke C, Rundek T, Elkind MV, et al. Metabolic syndrome and ischemic stroke risk – Northern Manhattan Study. Stroke. 2008;39(1):30–35. DOI: https://doi.org/10.1161/STROKEAHA.107.496588.
  5. The IDF consensus worldwide definition of the metabolic syndrome. Berlin: International Diabetes Federation; 2006. 24 p.
  6. Rekomendatsii ehkspertov vserossiyskogo nauchnogo obshchestva kardiologov po diagnostike i lecheniyu metabolicheskogo sindroma (vtoroy peresmotr) [Recommendations of the All-Russian Scientific Society of Cardiology on the diagnosis and treatment of metabolic syndrome (second revision)]. Moscow: All-Russian Scientific Society of Cardiology; 2009. 32 p. (In Russ.).
  7. Rekomendatsii po vedeniyu bolʹnykh s metabolicheskim sindromom. Klinicheskie rekomendatsii [Guidelines on the treatment of patients with metabolic syndrome. Clinical recommendations]. Moscow: Ministry of Health of the Russian Federation; 2013. 43 p. (In Russ.).
  8. Diagnostika, lechenie, profilaktika ozhireniya i assotsiirovannykh s nim zabolevaniy (natsionalʹnye klinicheskie rekomendatsii) [Diagnosis, treatment and prevention of obesity and related diseases (national clinical guidelines)]. St. Petersburg, 2017. 164 p. (In Russ.).
  9. Sosnova EA. Metabolic syndrome. V.F. Snegirev Archives of Obstetrics and Gynecology. 2016;3(4):172–180. (In Russ.). DOI: https://doi.org/10.18821/2313-8726-2016-3-4-172-180.
  10. Obesity and overweight. Geneva: World Health Organization; 2013.
  11. Ligibel JA, Alfano CM, Courneya KS, Demark-Wahnefried W, Burger RA, Chlebowski RT, et al. American society of clinical oncology position statement on obesity and cancer. Journal of Clinical Oncology. 2014;32(31):3568–3574. DOI: https://doi.org/10.1200/jco.2014.58.4680.
  12. Jungheim ES, Travieso JL, Carson KR, Moley KH. Obesity and reproductive function. Obstetrics and Gynecology Clinics of North America. 2012;39(4):479–493. DOI: https://doi.org/10.1016/j.ogc.2012.09.002.
  13. Lisitsin AB, Chernuha IM, Gorbunova NA. Scientific support of innovative technologies for healthy foods. Storage and Processing of Farm Products. 2012;(10):8–14. (In Russ.).
  14. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–781. DOI: https://doi.org/10.1016/S0140-6736(14)60460-8.
  15. Tutelyan VA, Baturin AK, Kon IYa, Martinchik AN, Uglitskikh AK, Korosteleva MM, et al. Prevalence of overweight and obesity in child population of Russia: multicenter study. Pediatria. Journal named after G.N. Speransky. 2014;93(5):28–31. (In Russ.).
  16. Ostroumov LA, Leonenko YuV, Razumnikova IS, Emelin VP. Applications of whey proteins in foods. Dairy Industry. 2008;(11):76–77. (In Russ.).
  17. Gorbatova KK. Biokhimiya moloka i molochnykh produktov [Biochemistry of milk and dairy products]. St. Petersburg: GIORD; 2010. 336 p. (In Russ.).
  18. Pogozheva AV. The use of natural phytosterins for correction of abnormalities of lipid metabolism. Kardiologiia. 2011;51(5):75–80. (In Russ.).
  19. Tutelʹyan VA, Pogozheva AV, Vysotskiy VG. Kliniko-gigienicheskie aspekty primeneniya soi [Clinical and hygienic aspects of soy]. Moscow: Novoe tysyacheletie; 2005. 257 p. (In Russ.).
  20. Lapteva EN, Mikhailov AA, Dyachkova-Gertseva DS. Products of increased biological value in the recovery period of unloading and dietary therapy. Pitanie [Food]. 2017;(1):16–19. (In Russ.).
  21. Illesca PG, Alvarez SM, Selenscig DA, Ferreira MD, Gimenez MS, Lombardo YB, et al. Dietary soy protein improves adipose tissue dysfunction by modulating parameters related with oxidative stress in dyslipidemic insulin-resistant rats. Biomedicine and Pharmacotherapy. 2017;88:1008–1015. DOI: https://doi.org/10.1016/j.biopha.2017.01.153.
  22. Sengupta S, Koley H, Dutta S, Bhowal J. Hepatoprotective effects of synbiotic soy yogurt on mice fed a highcholesterol diet. Nutrition. 2019;63–64:36–44. DOI: https://doi.org/10.1016/j.nut.2019.01.009.
  23. Sidorova YuS, Mazo VK, Kochetkova AA. Experimental evaluation of hypolipidemic properties of soy and rice proteins and their enzyme hydrolysates. Problems of Nutrition. 2018;87(2):77–84. (In Russ.). DOI: https://doi.org/10.24411/0042-8833-2018-10021.
  24. Udenigwe CC, Rouvinen-Watt K. The role of food peptides in lipid metabolism during dyslipidemia and associated health conditions. International Journal of Molecular Sciences. 2015;16(5):9303–9313. DOI: https://doi.org/10.3390/ijms16059303.
  25. Field CJ, Johnson I, Pratt VC. Glutamine and arginine: immunonutrients for improved health. Medicine and Science in Sports and Exercise. 2000;32(7):S377–S388. DOI: https://doi.org/10.1097/00005768-200007001-00002.
  26. Pogozheva AV. Sovremennye printsipy lechebnogo pitaniya pri ishemicheskoy bolezni serdtsa [Modern principles of therapeutic nutrition in coronary heart disease]. Consilium Medicum. 2009;11(10):84–92. (In Russ.).
  27. Abete I, Astrup A, Martinez JA, Thorsdottir I, Zulet MA. Obesity and the metabolic syndrome: role of different dietary macronutrient distribution patterns and specific nutritional components on weight loss and maintenance. Nutrition Reviews. 2010;68(4):214–231. DOI: https://doi.org/10.1111/j.1753-4887.2010.00280.x.
  28. Pavlyuk NB, Sharafetdinov KhKh. Features of dietary treatment in patients with coronary heart disease. Problems of Nutrition. 2015;84(4):25–36. (In Russ.).
  29. Lisitsyn AB, Chernukha IM, Lunina OI. Modern trends in the development of the functional food industry in Russia and abroad. Theory and Practice of Meat Processing. 2018;3(1):29–45. (In Russ.). DOI: 10.21323/2414-https://doi.org/438X-2018-3-1-29-45.
  30. Lyudinina AYu, Bojko ER. Functional role of monounsatuilated fatty acids in the human. Uspekhi fiziologicheskikh nauk [Advances in physiological sciences]. 2013;44(4):51–64. (In Russ.).
  31. Qian F, Korat AA, Malik V, Hu FB. Metabolic effects of monounsaturated fatty acid-enriched diets compared with carbohydrate or polyunsaturated fatty acid-enriched diets in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Care. 2016;39(8):1448–1457. DOI: https://doi.org/10.2337/dc16-1613.
  32. Yokoyama J, Someya Y, Yoshihara R, Ishii H. Effects of high-monounsaturated fatty acid enteral formula versus high-carbohydrate enteral formula on plasma glucose concentration and insulin secretion in healthy individuals and diabetic patients. Journal of International Medical Research. 2008;36(1):137–146. DOI: https://doi.org/10.1177/147323000803600117.
  33. Gladyshev MI. Essential polyunsaturated fatty acids and their dietary sources for man. Journal of Siberian Federal University. Biology. 2012;5(4):352–386. (In Russ.).
  34. Albracht-Schulte K, Kalupahana NS, Ramalingam L, Wang S, Rahman SM, Robert-McComb J, et al. Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. Journal of Nutritional Biochemistry. 2018;58:1–16. DOI: https://doi.org/10.1016/j.jnutbio.2018.02.012.
  35. Lorente-Cebrian S, Costa AGV, Navas-Carretero S, Zabala M, Martinez JA, Moreno-Aliaga MJ. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. Journal of Physiology and Biochemistry. 2013;69(3):633–651. DOI: https://doi.org/10.1007/s13105-013-0265-4.
  36. Damodaran SH, Parkin KL, Fennema OR. Fennema’s Food chemistry. St. Petersburg: Professiya; 2012. 1039 p. (In Russ.).
  37. Ermolaeva GA, Sapronova LA, Krivovoz BG. Sugar and its substitutes in the food production. Food processing Industry. 2012;(6):48–51. (In Russ.).
  38. Edinye sanitarno-ehpidemiologicheskie i gigienicheskie trebovaniya k tovaram, podlezhashchim sanitarnoehpidemiologicheskomu nadzoru (kontrolyu) [Uniform sanitary epidemiological and hygienic requirements for the goods subject to sanitary and epidemiological supervision (control)]. Moscow, 2010. 1011 p.
  39. Tutelʹyan VA, Baygarin EK, Pogozheva AV. Pishchevye volokna: gigienicheskaya kharakteristika i otsenka ehffektivnosti [Dietary fibre: hygienic characteristics and evaluation of effectiveness]. Moscow: SvR ARGUS; 2012. 243 p. (In Russ.).
  40. Kiseleva TL, Kochetkova AA, Tutelʹyan VA, Sharafetdinov KhKh. Zernovye kulʹtury i produkty v pitanii pri sakharnom diabete 2 tipa [Cereals and cereal foods in the diet for type 2 diabetes]. Moscow: BIBLIO-GLOBUS; 2018. 690 p. (In Russ.).
  41. Kodentsova VM, Vrzhesinskaya OA, Risnik DV, Nikityuk DB, Tutelyan VA. Micronutrient status of population of the Russian Federation and possibility of its correction. State of the problem. Problems of Nutrition. 2017;86(4):113–124. (In Russ.).
  42. Kodentsova VM, Risnik DV, Sharafetdinov KhKh, Nikityuk DB. Vitamins in diet of patients with metabolic syndrome. Therapeutic Archive. 2019;91(2):118–125. (In Russ.). DOI: https://doi.org/10.26442/00403660.2019.02.000097.
  43. Pechova A, Pavlata L. Chromium as an essential nutrient: a review. Veterinarni Medicina. 2007;52(1):1–18. DOI: https://doi.org/10.17221/2010-vetmed.
  44. Sreekanth R, Pattabhi V, Rajan SS. Molecular basis of chromium, insulin interactions. Biochemical and Biophysical Research Communications. 2008;369(2):725–729. DOI: https://doi.org/10.1016/j.bbrc.2008.02.083.
  45. Sinha S, Sen S. Status of zinc and magnesium levels in type 2 diabetes mellitus and its relationship with glycemic status. International Journal of Diabetes in Developing Countries. 2014;34(4):220–223. DOI: https://doi.org/10.1007/s13410-014-0196-9.
  46. El-Ashmony SMA, Morsi HK, Abdelhafez AM. Effect of zinc supplementation on glycemic control, lipid profile, and renal functions in patients with type II diabetes: a single blinded, randomized, placebo-controlled, trial. Journal of Biology, Agriculture and Healthcare. 2012;2(6):33–41.
  47. Kanoni S, Nettleton JA, Hivert MF, Ye Z, van Rooij FJA, Shungin D, et al. Total zinc intake may modify the glucoseraising effect of a zinc transporter (SLC30A8) variant a 14-cohort meta-analysis. Diabetes. 2011;60(9):2407–2416. DOI: https://doi.org/10.2337/db11-0176.
  48. Islam MR, Attia J, Ali L, McEvoy M, Selim S, Sibbritt D, et al. Zinc supplementation for improving glucose handling in pre-diabetes: A double blind randomized placebo controlled pilot study. Diabetes Research and Clinical Practice. 2016;115:39–46. DOI: https://doi.org/10.1016/j.diabres.2016.03.010.
  49. Yang HK, Lee SH, Han K, Kang B, Lee SY, Yoon KH, et al. Lower serum zinc levels are associated with unhealthy metabolic status in normal-weight adults: The 2010 Korea national health and nutrition examination survey. Diabetes and Metabolism. 2015;41(4):282–290. DOI: https://doi.org/10.1016/j.diabet.2015.03.005.
  50. Ranasinghe P, Pigera S, Galappatthy P, Katulanda P, Constantine GR. Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. Daru – Journal of Pharmaceutical Sciences. 2015;23:44–57. DOI: https://doi.org/10.1186/s40199-015-0127-4.
  51. Baltaci AK, Mogulkoc R. Leptin and zinc relation: In regulation of food intake and immunity. Indian Journal of Endocrinology and Metabolism. 2012;16(9):611–616. DOI: https://doi.org/10.4103/2230-8210.105579.
  52. Briggs DB, Giron RM, Schnittker K, Hart MV, Park CK, Hausrath AC, et al. Zinc enhances adiponectin oligomerization to octadecamers but decreases the rate of disulfide bond formation. BioMetals. 2012;25(2):469–486. DOI: https://doi.org/10.1007/s10534-012-9519-9.
  53. Soheylikhah S, Dehestani MR, Mohammadi SM, Afkhami-Ardekani M, Eghbali SA, Dehghan F. The effect of zinc supplementation on serum adiponectin concentration and insulin resistance in first degree relatives of diabetic patients. Iranian Journal of Diabetes and Obesity. 2012;4(2):57–62.
  54. Mazo VK, Gmoshinskiy IV, Shirina LI. Novye pishchevye istochniki ehssentsialʹnykh mikroehlementov-antioksidantov [New food sources of essential antioxidant trace elements]. Moscow: Miklosh; 2009; 208 p. (In Russ.).
  55. Tutelʹyan VA. Khimicheskiy sostav i kaloriynostʹ rossiyskikh produktov pitaniya [The chemical composition and calorie content of Russian foods]. Moscow: DeLi plus; 2012. 281 p. (In Russ.).
  56. Energy and protein requirements. Geneva: World Health Organization; 1985.
  57. Astashkin EI, Gleser MG, Orekhova NS, Grachev SV, Kiseleva AE. Influence of L-carnitine on reactive oxygen species production by blood phagocytes in postinfarction cardiosclerosis patients. Cardiovascular Therapy and Prevention. 2016;15(5):28–32. (In Russ.). DOI: https://doi.org/10.15829/1728-8800-2016-5-28-32.
  58. Primenenie L-karnitina v dietoterapii patsientov s ozhireniem. Metodicheskie rekomendatsii [Using L-carnitine in the diet therapy of obese patients. Guidelines]. Moscow: Federal Research Centre of Nutrition, Biotechnology and Food Safety; 2016. 14 p.
  59. Zorin SN, Vorob’eva IS, Vorob’eva VM, Netunaeva EA, Sidorova YuS, Kochetkova AA, et al. The processing of enzymatic hydrolysate of soy protein isolate. Food processing Industry. 2017; 8):13–15. (In Russ.).
How to quote?
Vorobyeva VM, Vorobyeva IS, Kochetkova AA, Mazo VK, Zorin SN, Sharafetdinov KhKh. Specialised hypocholesteremic foods: Ingredients, technology, effects. Foods and Raw Materials. 2020;8(1):20–29. DOI: http://doi.org/10.21603/2308-4057-2020-1-20-29
About journal

Download
Contents
Abstract
Keywords
Funding
References