ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Evaluation of rheological parameters of dough with ferrous lactate and ferrous gluconate

Abstract
The aim of this study was to analyse the effect ferrous gluconate and ferrous lactate on the rheological behaviour of dough from a high extraction rate. For fortification of wheat flour, we used iron ions in a divalent form in amounts of 3, 4, and 5 mg/100 g. To record the rheological characteriscics of the fortified wheat flour dough, Farinograph, Amilograph, Falling Number, Rheofermentometer, and Thermo Haake Mars dynamic rheometer were applied. The Farinograph did not show significant changes in the water absortion values in the samples with ferrous salts. As for dough development time and dough stability, small amounts of ferrous additives increased and large amounts decreased those parameters. The effect was more significant in the samples with ions from gluconate form than from lactate salt. The Amylograph recorded an increased peak viscosity with an increasing ferrous salt quantity. That was the case for both ferrous salt forms. The increased was in a similar way for both types of ferrous salt forms used. The total CO2 volume production and the retention coefficient obtained with the help of the Rheofermentometer device increased in the dough samples with 3 and 4 mg of iron/100 g. However, the addition of 5 mg of iron decreased those indicarors. The decrease was more significant for iron ions from ferrous ferrous gluconate than from ferrous lactate. The fundamental rheological properties of the dough were analysed by using a frequency sweep and oscillatory temperature sweep test. Ferrous lactate and ferrous gluconate influenced both the fundamental and empirical rheological properrties og the dough in similar way.
Keywords
Wheat flour, ferrous lactate, ferrous gluconate, rheological properties
REFERENCES
  1. Noort M.W.J., Mattila O., Katina K., and van der Kamp J.W. HealthBread: Wholegrain and high fibre breads with optimized textural quality. Journal of Cereal Science, 2017, vol. 78, pp. 57–65. DOI: https://doi.org/10.1016/j. jcs.2017.03.009.
  2. Hoppe M., Hulthen L., and Hallberg L. The relative bioavailability in humans of elemental iron powders for use in food fortification. European Journal of Nutrition, 2006, vol. 45, no. 1, pp. 37–44. DOI: https://doi.org/10.1007/ s00394-005-0560-0.
  3. Bryszewska M.A., Tomás-Cobos L., Gallego E., et al. In vitro bioaccessibility and bioavailability of iron from breads fortified with microencapsulated iron. LWT – Food Science and Technology, 2019, vol. 99, pp. 431–437. DOI: https:// doi.org/10.1016/j.lwt.2018.09.071.
  4. Amiri R., Bahraminejad S., and Cheghamirza K. Estimating genetic variation and genetic parameters for grain iron, zinc and protein concentrations in bread wheat genotypes grown in Iran. Journal of Cereal Science, 2018, vol. 80, pp. 16–23. DOI: https://doi.org/10.1016/j.jcs.2018.01.009.
  5. Alzaheb R. and Al-Amer O. The Prevalence of Iron Deficiency Anemia and its Associated Risk Factors Among a Sample of Female University Students in Tabuk, Saudi Arabia. Clinical Medicine Insights: Women’s Health, 2017, vol. 10, pp. 1–8. DOI: https://doi.org/10.1177/1179562X1774508/117.
  6. Bryszewska M., Laghi L., Zannoni A., et al. Bioavailability of Microencapsulated Iron from Fortified Bread AssessedUsing Piglet Model. Nutrients, 2017, vol. 9, no. 3, pp. 272. DOI: https://doi.org/10.3390/nu9030272.
  7. Martinsson A., Andersson C., Andell P., et al. Anemia in the general population: Prevalence, clinical correlates and prognostic impact. European Journal of Epidemiology, 2014, vol. 29, no. 7, pp. 489–498. DOI: https://doi.org/10.1007/ s10654-014-9929-9.
  8. Rodriguez-Ramiro I., Brearley C.A., Bruggraber S.F.A., et al. Assessment of iron bioavailability from different bread making processes using an in vitro intestinal cell model. Food Chemistry, 2017, vol. 228, pp. 91–98. DOI: https://doi. org/10.1016/j.foodchem.2017.01.130.
  9. Sadeghi H. and Eatye Salehi E. Effects of iron supply on the rheological properties and sensory characteristics of bread dough enriched with micronutrients. Journal of Fundamental and Applied Sciences, 2016, vol. 8, no. 3S, pp. 203–229. DOI: https://doi.org/10.4314/jfas.v8i3s.177.
  10. Blanco-Rojo R. and Vaquero P. Iron bioavailability from food fortification to precision nutrition. A review. Inno- vative Food Science and Emerging Technologies, 2019, vol. 51, pp. 126–138. DOI: https://doi.org/10.1016/j. ifset.2018.04.015.
  11. Hurrell R.F. Fortification: overcoming technical and practical barriers. The Journal of Nutrition, 2002, vol. 132, no. 4,pp. 806S–812S. DOI: https://doi.org/10.1093/jn/132.4.806S.
  12. Gharibzahedi S.M.T. and Jafari S.M. The importance of minerals in human nutrition: Bioavailability, food fortifica- tion, processing effects and nanoencapsulation. Trends in Food Science & Technology, 2017, vol. 62, pp. 119–132. DOI: https://doi.org/10.1016/j.tifs.2017.02.017.
  13. Lynch S.R. Why Nutritional Iron Deficiency Persists as a Worldwide Problem. The Journal of Nutrition, 2011,vol. 141, no. 4, pp. 763S–768S. DOI: https://doi.org/10.3945/jn.110.130609.
  14. Rebellato A.P., Castro Lima J., Silva J.G.S., Steel C.J., and Lima Pallone J.A. Mineral bioaccessibility in French breads fortified with different forms iron and its effects on rheological and technological parameters. Journal of Cereal Science, 2017, vol. 74, pp. 56–63. DOI: https://doi.org/10.1016/j.jcs.2017.01.020.
  15. Rebellato A.P., Bussi J., Silva J.G.S., et al. Effect of different iron compounds on rheological and technological pa- rameters as well as bioaccessibility of minerals in whole wheat bread. Food Research International, 2017, vol. 94, pp. 65–71. DOI: https://doi.org/10.1016/j.foodres.2017.01.016.
  16. Richins A.T., Burton K.E., Pahulu H.F., Jefferies L., and Dunn M.L. Effect of iron source on color and appearance of micronutrient-fortified corn flour tortillas. Cereal Chemistry, 2008, vol. 85, no. 4, pp. 561–565. DOI: https://doi. org/10.1094/CCHEM-85-4-0561.
  17. Walter T., Pizarro F., Abrams S.A., and Boy E. Bioavailability of elemental iron powder in white wheat bread. Euro- pean Journal of Clinical Nutrition, 2004, vol. 58, pp. 555–558. DOI: https://doi.org/10.1038/sj.ejcn.1601844.
  18. Hurrell R. Use of ferrous fumarate to fortify foods for infants and young children. Nutrition Reviews, 2010, vol. 68, no. 9, pp. 522–530. DOI: https://doi.org/10.1111/j.1753-4887.2010.00312.x.
  19. Nielsen A.V., Tetens I., and Meyer A.S. Potential of phytase-mediated iron release from cereal-based foods: A quanti- tative view. Nutrients, 2013, vol. 5, no. 8, pp. 3074–3098. DOI: https://doi.org/10.3390/nu5083074.
  20. Prentice A.M., Mendoza Y.A., Pereira D., et al. Dietary strategies for improving iron status: Balancing safety andefficacy. Nutrition Reviews, 2017, vol. 75, no. 1, pp. 49–60. DOI: https://doi.org/10.1093/nutrit/nuw055.
  21. Hurrell L., Bothwell C., Glahn H., et al. Enhancing the absorption of fortification iron: A SUSTAIN task force re- port. International Journal for Vitamin and Nutrition Research, 2004, vol. 74, no. 6, pp. 387–401. DOI: https://doi. org/10.1024/0300-9831.74.6.387.
  22. Li Y.O., Yadava D., Lo K.L., Diosady L. and Wesley A. Feasibility and optimization study of using cold-forming extrusion process for agglomerating and microencapsulating ferrous fumarate for salt double fortification with iodine and iron. Journal of Microencapsulation, 2011, vol. 28, no. 7, pp. 639–649. DOI: https://doi.org/10.3109/02652048. 2011.604434.
  23. dos Santos Vieira D.A., Steluti J., Verly-Jr E., Marchioni D.M., and Fisberg R.M. Brazilians’ experiences with iron fortification: evidence of effectiveness for reducing inadequate iron intakes with fortified flour policy. Public Health Nutrition, 2016, vol. 20, no. 2, pp. 363–370. DOI: https://doi.org/10.1017/S1368980016001981.
  24. Codina G.G., Zaharia D., Stroe S.G. Effect of different iron type on bread quality from white wheat flour. In Vitro Cellular & Developmental Biology-Plant, 2018, vol. 54, pp. S33–S34.
  25. Allen L., de Benoist B., Dary O., and Hurrel R. Guidelines on food fortification with micronutrients. Geneva, Switzer- land: World Health Organization Publ., 2006, 341 p.
  26. Codină G.G., Dabija A., Stroe S.G. and Ropciuc S. Optimization of iron–oligofructose formulation on wheat flour dough rheological properties. Journal of Food Processing and Preservation, 2018. DOI: https://doi.org/10.1111/ jfpp.13857.
  27. Codină G.G., Zaharia D., Stroe S.G., and Ropciuc S. Influence of calcium ions addition from gluconate and lactate salts on refined wheat flour dough rheological properties. CyTA – Journal of Food, 2018, vol. 16, no. 1, pp. 884–891. DOI: https://doi.org/10.1080/19476337.2018.1498129.
  28. Miller R.A. and Hoseney R.C. Role of salt in baking. Cereal Foods World, 2008, vol. 53, pp. 4–6. DOI: https://doi. org/10.1094/CFW-53-1-0004.
  29. Akhtar S., Anjum F., Rehman S., and Sheikh M.A. Effect of mineral fortification on rheological properties of whole wheat flour. Journal of Texture Studies, 2009, vol. 40, no. 1, pp. 51–65. DOI: https://doi.org/10.1111/j.1745- 4603.2008.00169.x
  30. Rebellato A.P., Bussi J., Silva J.G.S., et al. Effect of different iron compounds on rheological and technological pa- rameters as well as bioaccessibility of minerals in whole wheat bread. Food Research International, 2017, vol. 94, pp. 65–71. DOI: https://doi.org/10.1016/j.foodres.2017.01.016.
  31. Codină G.G., Mironeasa S., and Mironeasa C. Variability and relationship among Mixolab and Falling Number evalu- ation based on influence of fungal α-amylase addition. Journal of the Science of Food and Agriculture, 2012, vol. 92, no. 10, pp. 2162–2170. DOI: https://doi.org/10.1002/jsfa.5603.
  32. Ji T., Penning B., and Baik B.K. Pre-harvest sprouting resistance of soft winter wheat varieties and associated grain characteristics. Journal of Cereal Science, 2018, vol. 83, pp. 110–115. DOI: https://doi.org/10.1016/j.jcs.2018.08.006.
  33. Donelson J.R., Gaines C.S., Donelson T.S., and Finney P.L. Detection of wheat preharvest sproutingusing a prege- latinized starch substrate and centrifugation. Cereal Chemistry, 2001, vol. 78, no. 3, pp. 282–285. DOI: https://doi. org/10.1094/CCHEM.2001.78.3.282.
  34. Gray J.A. and Bemiller, J.N. Bread stailing: molecular basis and control. Comprehensive Reviews in Food Science and Food Safety, 2003, vol. 2, no. 1, pp. 1–21. DOI: https://doi.org/10.1111/j.1541-4337.2003.tb00011.x.
  35. Codină G.G., Zaharia D., Mironeasa S., and Ropciuc, S. Evaluation of wheat flour dough rheological properties by magnesium lactate salt addition. Bulletin UASVM. Food Science and Technology, 2018, vol. 75, no. 1, pp. 21–26. DOI: https://doi.org/10.15835/buasvmcn-fst:0019.
  36. Codină G.G., Arghire C., Rusu M., Oroian M.A., and Sănduleac E.T. Influence of two varieties of flaxseed flour ad- dition on wheat flour dough rheological properties. Annals of the University Dunarea de Jos of Galati, Fascicle VI: Food Technology, 2017, vol. 41, no. 2, pp. 115–126.
How to quote?
Codină G.G., Ropciuc S., Voinea A., and Dabija A. Evaluation of rheological parameters of dough with ferrous lactate and ferrous gluconate. Foods and Raw Materials, 2019, vol. 7, no. 1, pp. 185–192. DOI: http://doi.org/10.21603/2308-4057-2019-1-185-192
About journal

Download
Contents
Abstract
Keywords
References