ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Zeboid cow milk: physicochemical quality indicator

Аннотация
Introduction. A herd of zeboid cattle was created by the Snegiri Scientific and Experimental Farm (Moscow region, Russia) as a result of long-term selection and crossbreeding zebu (Bos indicus L.) with cattle (Bos Taurus L.). These hybrid cows have good physiological parameters, high resistance to diseases, and a significant adaptive potential. The quality of milk produced by zebu cows at different lactation and milking times has not been studied as well as their milking capacity. Therefore, we aimed to assess the variability of specific physicochemical indicators of milk produced by Snegiri’s zeboid dairy herd. Study objects and methods. The milk of 193 zeboid cows (6–12% of zebu blood) from the Snegiri Farm was analyzed by standard methods for quality indicators such as fat, nonfat milk solids, density, bound water, freezing point, protein, and lactose. Then, we determined how these indicators changed depending on the lactation number and the time of milking (morning/evening). Statistical analysis was applied to process the data. Results and discussion. Such indicators as nonfat milk solids, density, bound water, freezing point, protein, and lactose of zeboid cow milk were consistent with the normal indicators for raw cow’s milk. Only its fat content (4.39%) exceeded the norm. We found no correlation between the quality of milk and the number of lactations. However, the evening milk was more concentrated, with a significant increase in nonfat milk solids and density, as well as with a lower freezing point. Conclusion. Zeboid cows, which can be bred in suboptimal conditions, produce milk suitable for dairy products since it has a high fat content regardless of lactation and milking time.
Ключевые слова
Zeboid cattle , milk , quality indicators , fat , nonfat milk solids , density , freezing point
СПИСОК ЛИТЕРАТУРЫ
  1. Mei C, Wang H, Liao Q, Wang L, Cheng G, Wang H, et al. Genetic architecture and selection of Chinese cattle revealed by whole genome resequencing. Molecular Biology and Evolution. 2018;35(3):688–699. https://doi.org/10.1093/molbev/msx322.
  2. Utsunomiya YT, Milanesi M, Fortes MRS, Porto-Neto LR, Utsunomiya ATH, Silva MVGB, et al. Genomic clues of the evolutionary history of Bos indicus cattle. Animal Genetics. 2019;50(6):557–568. https://doi.org/10.1111/age.12836.
  3. Amerkhanov KA, Solovyeva OI, Morozova NI, Karzayeva NN, Rusanova NG. Assessment of the economic effect of using the black-motley cattle breed with the zebu pedigree in dairy cattle breeding. Izvestiya of Timiryazev Agricultural Academy. 2020;(2):116–133. (In Russ.). https://doi.org/10.26897/0021-342X-2020-2-116-135.
  4. Glazko VI, Boronetskaya OI, Erkenov TA, Kakhovich BV, Glazko TT. Genetic relationship between Bos taurus and Bos indicus. Genetics and Breeding of Animals. 2019;(3):48–57. (In Russ.).
  5. Dokhi Ya. Vyvedenie spetsializirovannogo skota molochnogo tipa dlya promyshlennykh ferm [Breeding specialized dairy cattle for commercial farms]. In: Glembotskiy YaL, editor. Aktualʹnye voprosy prikladnoy genetiki v zhivotnovodstve [Topical issues of applied genetics in animal husbandry]. Moscow: Kolos; 1982. pp. 118–143. (In Russ.).
  6. Verdiev ZK, Veli-zade DI. Fiziko-khimicheskie svoystva moloka zebu [Physicochemical properties of zebu milk]. Dairy Industry. 1960;(4):26–27. (In Russ.).
  7. Amerkhanov KhA, Shevkhuzhev AF, Ehlʹdarov BA. Gibridizatsiya krupnogo rogatogo skota na Severnom Kavkaze [Crossbreeding of cattle in the North Caucasus]. Moscow: Ileksa; 2014. 419 p. (In Russ.).
  8. Ehrnst LK. Geneticheskie resursy selʹskokhozyaystvennykh zhivotnykh v Rossii i sopredelʹnykh stranakh [Genetic resources of farm animals in Russia and neighboring countries]. St. Petersburg: VNIIGRZH; 1994. 469 p. (In Russ.).
  9. Zabashta NN, Tilloev IT, Tuzova SA, Zabashta AV. Growth features of the golstinized and switzebuid young. Proceedings of the Kuban State Agrarian University. 2019;(81):251–255. (In Russ.). https://doi.org/10.21515/1999-1703-81-251-255.
  10. Upelniek VP, Zavgorodniy SV, Makhnova EN, Senator SA. The history of the origin and prospects for the spread of the zebu-type black-and-white cattle (review). Achievements of Science and Technology in Agro-Industrial Complex. 2020;34(12):66–72. (In Russ.). https://doi.org/10.24411/0235-2451-2020-11211.
  11. Ivanov VA, Marzanov NS, Eliseeva LI, Tadzhiyev KP, Marzanova SN. Genotypes of cattle breeds and quality of milk. Problems of Productive Animal Biology. 2017;(3):48–65. (In Russ.).
  12. Khusainova AA. The use of zebu in breeding with cattle. Molodezhʹ i nauka [Youth and Science]. 2013;(4). (In Russ.).
  13. Boison SA, Utsunomiya ATH, Santos DJA,Neves HHR, Carvalheiro R, Mészáros G, et al. Accuracy of genomic predictions in Gyr (Bos indicus) dairy cattle. Journal of Dairy Science. 2017;100(7):5479–5490. https://doi.org/10.3168/jds.2016-11811.
  14. Ashokan M, Ramesha KP, Hallur S, Karthikkeyan G, Rana E, Azharuddin N, et al. Differences in milk metabolites in Malnad Gidda (Bos indicus) cows reared under pasture-based feeding system. Scientific Reports. 2021;11(1). https://doi.org/10.1038/s41598-021-82412-z.
  15. Pautova EA, Kosmovich EYu, Vodchits EA, Evtushenko KO. Pokazateli kachestva moloka v zavisimosti ot ego sortovoy prinadlezhnosti [Quality indicators of milk of different grades]. Nauchnyy potentsial molodezhi – budushchemu Belarusi: materialy XIII mezhdunarodnoy molodezhnoy nauchno-prakticheskoy konferentsii [Scientific Potential of Youth to the Future of Belarus: Proceedings of the 13th international youth scientific and practical conference]; 2019; Pinsk. Pinsk: Polessky State University; 2019. p. 80–82. (In Russ.).
  16. Ginzburg AS, Gromov MA, Krasovskaya GI. Teplofizicheskie kharakteristiki pishchevykh produktov [Thermophysical characteristics of food products]. Moscow: Pishchevaya promyshlennostʹ; 1980. 288 p. (In Russ.).
  17. Bylund G. Dairy processing handbook. Lund: Tetra Pak Processing Systems; 1995. 436 р.
  18. Smirnov AV. Praktikum po veterinarno-sanitarnoy ehkspertize [Practical course of veterinary and sanitary examination]. St. Petersburg: GIORD; 2015. 320 p. (In Russ.).
  19. Gorbatova KK. Biokhimiya moloka i molochnykh produktov [Biochemistry of milk and dairy products].St. Petersburg: GIORD, 2004. 336 p. (In Russ.).
  20. Markova KV, Alʹtman AD. Kakie faktory vliyayut na sostav moloka [What factors affect the composition of milk]. Moscow: Ministerstvo selʹskogo khozyaystva RSFSR; 1963. 157 p. (In Russ.).
  21. Tamarovsky MV, Karymsakov TN, Abdullaev KSh, Zhumanov KZh. Condition and prospects for breeding of dairy cattle of aulieatinskaya breed in Kazakhstan. Zootechniya. 2020;(8):2–5. (In Russ.).
  22. Firsova EhV, Kartashova AP. Osnovnye porody molochnogo skota v khozyaystvakh Rossiyskoy Federatsii [The main breeds of dairy cattle in the farms of the Russian Federation]. Izvesniya Saint-Petersburg State Agrarian University. 2019;(55):69–75. (In Russ.). https://doi.org/10.24411/2078-1318-2019-12069.
Как цитировать?
Beketov S.V., Kaledin A.P., Senator S.A., Upelniek V.P., Kuznetsov S.B., Stolpovsky Y.A. Zeboid cow milk: physicochemical quality indicator. Foods and Raw Materials, 2022, вып. 10, том. 1, стр. 171-175
DOI
http://doi.org/10.21603/2308-4057-2022-1-171-175
Издатель
Кемеровский государственный университет
https://kemsu.ru
ISSN
2308-4057 (Print) /
2310-9599 (Online)
О журнале