ISSN 2308-4057 (Печать),
ISSN 2310-9599 (Онлайн)

Cold chain relevance in the food safety of perishable products

The food cold chain is an effective tool that allows food markets to maintain food quality and reduce losses. Poor logistics may result in foodborne disease outbreaks and greenhouse gas emissions caused by organic matter decay. The ongoing pandemic of COVID-19 makes it necessary to study the chances of SARS-CoV-2 transmissions in food products. This study reviews cold chain logistics as a handy tool for avoiding food safety risks, including COVID-19. The cold chain of perishables and its proper management make it possible to maintain quality and safety at any stage of the food supply chain. The technology covers each link of the food chain to prevent microbial spoilage caused by temperature fluctuations and the contamination with SARS-CoV-2 associated with perishable foods. Given the lack of knowledge in this field in Latin America, the region needs new research to determine the impact of the cold chain on perishable foodstuffs. The perishable cold chain is only as strong as its weakest link, and the national and international markets require new traceability protocols to minimize the effect of COVID-19.
Ключевые слова
Cold chain, meat, food safety, temperature, COVID-19
This review study did not receive any specific grant from the public, commercial, or not-for-profit funding agencies.
  1. Buaynova IV. Simulating the refrigeration of batch dairy products in a multizone cold supply system. Foods and Raw Materials. 2014;2(2):121–129.
  2. Mercier S, Villeneuve S, Mondor M, Uysal I. Time-temperature management along the food cold chain: A review of recent developments. Comprehensive Reviews in Food Science and Food Safety. 2017;16(4):647–667.
  3. Li X, Zhou K. Multi-objective cold chain logistic distribution center location based on carbon emission. Environmental Science and Pollution Research. 2021;28(25):32396–32404.
  4. Kaur H, Singh SP. Modeling low carbon procurement and logistics in supply chain: A key towards sustainable production. Sustainable Production and Consumption. 2017;11:5–17.
  5. Mariano EB, Gobbo JA, Camioto FC, Rebelatto DAN. CO2 emissions and logistics performance: A composite index proposal. Journal of Cleaner Production. 2017;163:166–178.
  6. Liu J, Li F, Li T, Yun Z, Duan X, Jiang Y. Fibroin treatment inhibits chilling injury of banana fruit via energy regulation. Scientia Horticulturae. 2019;248:8–13.
  7. East A, Smale N, Kang S. A method for quantitative risk assessment of temperature control in insulated boxes. International Journal of Refrigeration. 2009;32(6):1505–1513.
  8. The state of food and agriculture 2019. Moving forward on food loss and waste reduction. Rome: FAO; 2019. 182 p.
  9. Loisel J, Duret S, Cornuéjols A, Cagnon D, Tardet M, Derens-Bertheau E, et al. Cold chain break detection and analysis: Can machine learning help? Trends in Food Science and Technology. 2021;112:391–399.
  10. Skawińska E, Zalewski RI. Economic impact of temperature control during food transportation – A COVID-19 perspective. Foods. 2022;11(3).
  11. Cai J, Sun W, Huang J, Gamber M, Wu J, He G. Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerging Infectious Diseases. 2020;26(6):1343–1345.
  12. Xie C, Zhao H, Li K, Zhang Z, Lu X, Peng H, et al. The evidence of indirect transmission of SARS-CoV-2 reported in Guangzhou, China. BMC Public Health. 2020;20(1).
  13. Aboubakr HA, Sharafeldin TA, Goyal SM. Stability of SARS‐CoV‐2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transboundary and Emerging Diseases. 2021;68(2):296–312.
  14. Ji W, Li X, Chen S, Ren L. Transmission of SARS-CoV-2 via fomite, especially cold chain, should not be ignored. Proceedings of the National Academy of Sciences of the United States of America. 2021;118(11).
  15. The Food Supply Chain [Internet]. [cited 2022 Apr 15]. Available from:
  16. Global food losses and food waste – extent, causes and prevention [Internet]. [cited 2022 Apr 15]. Available from:
  17. Xue L, Liu G, Parfitt J, Liu X, Van Herpen E, Stenmarck Å, et al. Missing food, missing data? A critical review of global food losses and food waste data. Environmental Science and Technology. 2017;51(12):6618–6633.
  18. Food waste index report 2021. United Nations Environment Programme; 2021. 100 p.
  19. Araujo GP, Lourenço CE, Araújo CML, Bastos A. Intercâmbio Brasil-União Europeia sobre desperdício de alimentos: relatório final. Brasília: Diálogos Setoriais União Europeia – Brasil; 2018. 40 p. (In Portuguese).
  20. Kemper K, Voegele J, Hickey V, Ahuja PS, Poveda R, Edmeades S, et al. A conceptual framework for a national strategy on food loss and waste in Mexico. 2019.
  21. Project on master plan study for integrated solid waste management in Bogota D.C. Bogota: Kokusai Kogyo, Ex Research Institute; 2013. 428 p.
  22. Montanari R. Cold chain tracking: A managerial perspective. Trends in Food Science and Technology. 2008;19(8):425–431.
  23. Ndraha N, Hsiao H-I, Vlajic J, Yang M-F, Lin H-TV. Time-temperature abuse in the food cold chain: Review of issues, challenges, and recommendations. Food Control. 2018;89:12–21.
  24. Taoukis PS, Gogou E, Tsironi T, Giannoglou M, Dermesonlouoglou E, Katsaros G. Food cold chain management and optimization. In: Nedović V, Raspor P, Lević J, Šaponjac VT, Barbosa-Cánovas GV, editors. Emerging and traditional technologies for safe, healthy and quality food. Cham: Springer; 2016. pp. 285–309.
  25. International Dictionary of Refrigeration [Internet]. [cited 2022 Apr 15]. Available from:
  26. Tromp S-O, Haijema R, Rijgersberg H, van der Vorst JGAJ. A systematic approach to preventing chilled-food waste at the retail outlet. International Journal of Production Economics. 2016;182:508–518.
  27. Koutsoumanis KP, Gougouli M. Use of time temperature integrators in food safety management. Trends in Food Science and Technology. 2015;43(2):236–244.
  28. Kumari L, Narsaiah K, Grewal MK, Anurag RK. Application of RFID in agri-food sector. Trends in Food Science and Technology. 2015;43(2):144–161.
  29. Joshi K, Warby J, Valverde J, Tiwari B, Cullen PJ, Frias JM. Impact of cold chain and product variability on quality attributes of modified atmosphere packed mushrooms (Agaricus bisporus) throughout distribution. Journal of Food Engineering. 2018;232:44–55.
  30. Likar K, Jevšnik M. Cold chain maintaining in food trade. Food Control. 2006;17(2):108–113.
  31. Lundén J, Vanhanen V, Kotilainen K, Hemminki K. Retail food stores’ internet-based own-check databank records and health officers’ on-site inspection results for cleanliness and food holding temperatures reveal inconsistencies. Food Control. 2014;35(1):79–84.
  32. Lundén J, Vanhanen V, Myllymäki T, Laamanen E, Kotilainen K, Hemminki K. Temperature control efficacy of retail refrigeration equipment. Food Control. 2014;45:109–114.
  33. Rediers H, Claes M, Peeters L, Willems KA. Evaluation of the cold chain of fresh-cut endive from farmer to plate. Postharvest Biology and Technology. 2009;51(2):257–262.
  34. McKellar RC, LeBlanc DI, Lu J, Delaquis P. Simulation of Escherichia coli O157:H7 behavior in fresh-cut lettuce under dynamic temperature conditions during distribution from processing to retail. Foodborne Pathogens and Disease. 2012;9(3):239–244.
  35. Frank D, Zhang Y, Li Y, Luo X, Chen X, Kaur M, et al. Shelf life extension of vacuum packaged chilled beef in the Chinese supply chain. A feasibility study. Meat Science. 2019;153:135–143.
  36. Tingman W, Jian Z, Xiaoshuan Z. Fish product quality evaluation based on temperature monitoring in cold chain. African Journal of Biotechnology. 2010;9(37):6146–6151.
  37. Derens E, Palagos B, Guilpart J. The cold chain of chilled products under supervision in France. IUFoST. 2006;19:51–64.
  38. Morelli E, Derens E. Temperature evolution of the smoked salmon during the logistical circuits. Revue Générale Du Froid et Du Conditionnement d’Air. 2009:51–56.
  39. Koutsoumanis K, Pavlis A, Nychas G-JE, Xanthiakos K. Probabilistic model for Listeria monocytogenes growth during distribution, retail storage, and domestic storage of pasteurized milk. Applied and Environmental Microbiology. 2010;76(7):2181–2191.
  40. Mai NTT, Margeirsson B, Margeirsson S, Bogason SG, Sigurgísladóttir S, Arason S. Temperature mapping of fresh fish supply chains – air and sea transport. Journal of Food Process Engineering. 2012;35(4):622–656.
  41. Koseki S, Isobe S. Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table. International Journal of Food Microbiology. 2005;104(3):239–248.
  42. Goedhals-Gerber LL, Haasbroek L, Freiboth H, van Dyk FE. An analysis of the influence of logistics activities on the export cold chain of temperature sensitive fruit through the Port of Cape Town. Journal of Transport and Supply Chain Managemen. 2015;9(1).
  43. Goedhals-Gerber LL, Stander C, van Dyk FE. Maintaining cold chain integrity: Temperature breaks within fruit reefer containers in the Cape Town Container Terminal. Southern African Business Review. 2017;21(1):362–384.
  44. Jofré A, Latorre-Moratalla ML, Garriga M, Bover-Cid S. Domestic refrigerator temperatures in Spain: Assessment of its impact on the safety and shelf-life of cooked meat products. Food Research International. 2019;126.
  45. Baldera Zubeldia B, Nieto Jiménez M, Valenzuela Claros MT, Mariscal Andrés JL, Martin-Olmedo P. Effectiveness of the cold chain control procedure in the retail sector in Southern Spain. Food Control. 2016;59:614–618.
  46. Ndraha N, Sung W-C, Hsiao H-I. Evaluation of the cold chain management options to preserve the shelf life of frozen shrimps: A case study in the home delivery services in Taiwan. Journal of Food Engineering. 2019;242:21–30.
  47. Chaitangjit P, Ongkunaruk P. The study of cold storage and temperature controlled transportation: A case study of a chain restaurant in Thailand. Pamukkale University Journal of Engineering Sciences. 2019;25(9):1014–1019.
  48. Love DC, Kuehl LM, Lane RM, Fry JP, Harding J, Davis BJK, et al. Performance of cold chains and modeled growth of Vibrio parahaemolyticus for farmed oysters distributed in the United States and internationally. International Journal of Food Microbiology. 2020;313.
  49. Zeng W, Vorst K, Brown W, Marks BP, Jeong S, Pérez-Rodríguez F, et al. Growth of Escherichia coli O157:H7 and Listeria monocytogenes in packaged fresh-cut romaine mix at fluctuating temperatures during commercial transport, retail storage, and display. Journal of Food Protection. 2014;77(2):197–206.
  50. Brown W, Ryser E, Gorman L, Steinmaus S, Vorst K. Transit temperatures experienced by fresh-cut leafy greens during cross-country shipment. Food Control. 2016;61:146–155.
  51. Duret S, Hoang H-M, Guillier L, Derens-Bertheau E, Dargaignaratz C, Oriol S, et al. Interactions between refrigeration temperatures, energy consumption in a food plant and microbiological quality of the food product: Application to refrigerated stuffed pasta. Food Control. 2021;126.
  52. Monforti-Ferrario F, Dallemand J-F, Pinedo Pascua I, Motola V, Banja M, Scarlat N, et al. Energy use in the EU food sector: State of play and opportunities for improvement. European Union; 2015. 176 p.
  53. Tassou SA, Lewis JS, Ge YT, Hadawey A, Chaer I. A review of emerging technologies for food refrigeration applications. Applied Thermal Engineering. 2010;30(4):263–276.
  54. Laguerre O, Chaomuang N. Closed refrigerated display cabinets: Is it worth it for food quality? Research anthology on food waste reduction and alternative diets for food and nutrition security. IGI Global; 2021. pp. 99–121.
  55. Hundy GF, Trott AR, Welch T. The cold chain – transport, storage, retail. In: Hundy GF, Trott AR, Welch TC, editors. Refrigeration, air conditioning and heat pumps. Butterworth-Heinemann; 2016. pp. 273–287.
  56. Brecht PE, Brecht JK, Saenz JE. Temperature-controlled transport for air, land, and sea. In: Yahia EM, editor. Postharvest technology of perishable horticultural commodities. Woodhead Publishing; 2019. pp. 591–637.
  57. Kitinoja L. Use of cold chains for reducing food losses in developing countries. PEF White Paper No 13-03 [Internet]. [cited 2022 Apr 16]. Available from:
  58. The validity of food miles as an indicator of sustainable development. Final Report produced for DEFRA [Internet]. [cited 2022 Apr 16]. Available from:
  59. Pirog RS, Van Pelt T, Enshayan K, Cook E. Food, fuel, and freeways: An Iowa perspective on how far food travels, fuel usage, and greenhouse gas emissions [Internet]. [cited 2022 Apr 16]. Available from:
  60. McKellar RC, LeBlanc DI, Rodríguez FP, Delaquis P. Comparative simulation of Escherichia coli O157:H7 behaviour in packaged fresh-cut lettuce distributed in a typical Canadian supply chain in the summer and winter. Food Control. 2014;35(1):192–919.
  61. Pelletier W, Brecht JK, Nunes, MCN, Émond J-P. Quality of strawberries shipped by truck from California to Florida as influenced by postharvest temperature management practices. HortTechnology. 2011;21(4):482–493.
  62. Abad E, Palacio F, Nuin M, Zárate AG, Juarros A, Gómez JM, et al. RFID smart tag for traceability and cold chain monitoring of foods: Demonstration in an intercontinental fresh fish logistic chain. Journal of Food Engineering. 2009;93(4):394–399.
  63. Pelletier W, Nunes do Nascimento MC, Emond J-P. Air transportation of fruits and vegetables: An update. Stewart Postharvest Review. 2005;1(1).
  64. Arduino G, Carrillo Murillo D, Parola F. Refrigerated container versus bulk: Evidence from the banana cold chain. Maritime Policy and Management. 2015;42(3):228–245.
  65. Jedermann R, Praeger U, Geyer M, Lang W. Remote quality monitoring in the banana chain. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014;372(2017).
  66. Laguerre O, Hoang HM, Flick D. Experimental investigation and modelling in the food cold chain: Thermal and quality evolution. Trends in Food Science and Technology. 2013;29(2):87–97.
  67. Leungtongkum T, Flick D, Hoang HM, Steven D, Delahaye A, Laguerre O. Insulated box and refrigerated equipment with PCM for food preservation: State of the art. Journal of Food Engineering. 2022;317.
  68. Robertson J, Franzel L, Maire D. Innovations in cold chain equipment for immunization supply chains. Vaccine. 2017;35(17):2252–2259.
  69. Singh S, Gaikwad KK, Lee M, Lee YS. Temperature sensitive smart packaging for monitoring the shelf life of fresh beef. Journal of Food Engineering. 2018;234:41–49.
  70. Derens-Bertheau E, Osswald V, Laguerre O, Alvarez G. Cold chain of chilled food in France. International Journal of Refrigeration. 2015;52:161–167.
  71. Göransson M, Nilsson F, Jevinger Å. Temperature performance and food shelf-life accuracy in cold food supply chains – Insights from multiple field studies. Food Control. 2018;86:332–341.
  72. Morelli E, Noel V, Rosset P, Poumeyrol G. Performance and conditions of use of refrigerated display cabinets among producer/vendors of foodstuffs. Food Control. 2012;26(2):363–368.
  73. Ben-abdallah R, Leducq D, Hoang HM, Pateau O, Ballot-Miguet B, Delahaye A, et al. Modeling and experimental investigation for load temperature prediction at transient conditions of open refrigerated display cabinet using Modelica environment. International Journal of Refrigeration. 2018;94:102–110.
  74. Navaz HK, Henderson BS, Faramarzi R, Pourmovahed A, Taugwalder F. Jet entrainment rate in air curtain of open refrigerated display cases. International Journal of Refrigeration. 2005;28(2):267–275.
  75. Maouris G, Sarabia Escriva EJ, Acha S, Shah N, Markides CN. CO2 refrigeration system heat recovery and thermal storage modelling for space heating provision in supermarkets: An integrated approach. Applied Energy. 2020;264.
  76. Mylona Z, Kolokotroni M, Tsamos KM, Tassou SA. Comparative analysis on the energy use and environmental impact of different refrigeration systems for frozen food supermarket application. Energy Procedia. 2017;123:121–130.
  77. Tassou SA, Ge Y, Hadawey A, Marriott D. Energy consumption and conservation in food retailing. Applied Thermal Engineering. 2011;31(2–3):147–156.
  78. Efstratiadi M, Acha S, Shah N, Markides CN. Analysis of a closed-loop water-cooled refrigeration system in the food retail industry: A UK case study. Energy. 2019;174:1133–1144.
  79. Subramaniam P. The stability and shelf life of food. A volume in Woodhead Publishing series in food science, technology and nutrition. Second Ed. Woodhead Publishing; 2016. 612 p.
  80. Sun XD, Holley RA. Antimicrobial and antioxidative strategies to reduce pathogens and extend the shelf life of fresh red meats. Comprehensive Reviews in Food Science and Food Safety. 2012;11(4):340–354.
  81. Lee H, Yoon Y. Etiological agents implicated in foodborne illness world wide. Food Science of Animal Resources. 2021;41:1–7.
  82. Vorst K, Shivalingaiah N, Monge Brenes AL, Coleman S, Mendonça A, Brown JW, et al. Effect of display case cooling technologies on shelf-life of beef and chicken. Food Control. 2018;94:56–64.
  83. Dave D, Ghaly AE. Meat spoilage mechanisms and preservation techniques: A critical review. American Journal of Agricultural and Biological Sciences. 2011;6(4):486–510.
  84. Jay JM, Loessner MJ, Golden DA. Modern food microbiology. 7th ed. New York: Springer; 2005. 790 p.
  85. Kotsiri Z, Vidic J, Vantarakis A. Applications of biosensors for bacteria and virus detection in food and water – A systematic review. Journal of Environmental Sciences. 2022;111:367–379.
  86. Lambert AD, Smith JP, Dodds KL. Shelf life extension and microbiological safety of fresh meat – a review. Food Microbiology. 1991;8(4):267–297.
  87. Raab V, Petersen B, Kreyenschmidt J. Temperature monitoring in meat supply chains. British Food Journal. 2011;113(10):1267–1289.
  88. Novoa CP, Restrepo LP. Influence of psichrotrophic bacteria in proteolytic activity of milk. Revista de La Facultad de Medicina Veterinaria y de Zootecnia. 2007;54(1):9–16.
  89. James C, Onarinde BA, James SJ. The use and performance of household refrigerators: A review. Comprehensive Reviews in Food Science and Food Safety. 2017;16(1):160–179.
  90. The European Union One Health 2019 Zoonoses Report. EFSA Journal. 2021;19(2).
  91. Wu S, Xu S, Chen X, Sun H, Hu M, Bai Z, et al. Bacterial communities changes during food waste spoilage. Scientific Reports. 2018;8(1).
  92. Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nature Reviews Microbiology. 2004;2:123–140.
  93. Amir M, Riaz M, Chang Y-F, Ismail A, Hameed A, Ahsin M. Antibiotic resistance in diarrheagenic Escherichia coli isolated from broiler chickens in Pakistan. Journal of Food Quality and Hazards Control. 2021;8(2):78–86.
  94. Coronavirus disease (COVID-19) pandemic [Internet]. [cited 2022 Apr 17]. Available from:
  95. Normile D. Source of Beijing’s big new COVID-19 outbreak is still a mystery. Science. 2020.
  96. Yang J, Niu P, Chen L, Wang L, Zhao L, Huang B, et al. Genetic tracing of HCoV-19 for the re-emerging outbreak of COVID-19 in Beijing, China. Protein and Cell. 2021;12(1):4–6.
  97. How to import foreign food safety? [Internet]. [cited 2022 Apr 17]. Available from:
  98. Adelodun B, Ajibade FO, Tiamiyu AO, Nwogwu NA, Ibrahim RG, Kumar P, et al. Monitoring the presence and persistence of SARS-CoV-2 in water-food-environmental compartments: State of the knowledge and research needs. Environmental Research. 2021;200.
  99. Waltenburg MA, Victoroff T, Rose CE, Butterfield M, Jervis RH, Fedak KM, et al. Update: COVID-19 among workers in meat and poultry processing facilities – United States, April–May 2020. Morbidity and Mortality Weekly Report. 2020;69(27):887–892.
  100. Bivins A, Greaves J, Fischer R, Yinda KC, Ahmed W, Kitajima M, et al. Persistence of SARS-CoV-2 in Water and wastewater. Environmental Science and Technology Letters. 2020;7(12):937–942.
  101. Lee YJ, Kim JH, Choi BS, Choi JH, Jeong YI. Characterization of severe acute respiratory syndrome coronavirus 2 stability in multiple water matrices. Journal of Korean Medical Science. 2020;117(13):7001–7003.
  102. Dai M, Li H, Yan N, Huang J, Zhao L, Xu S, et al. Long-term survival of SARS-CoV-2 on salmon as a source for international transmission. Journal of Infectious Diseases. 2021;223(3):537–539.
  103. Ahmed F, Islam MA, Kumar M, Hossain M, Bhattacharya P, Islam MT, et al. First detection of SARS-CoV-2 genetic material in the vicinity of COVID-19 isolation Centre in Bangladesh: Variation along the sewer network. Science of the Total Environment. 2021;776.
  104. Hokajärvi A-M, Rytkönen A, Tiwari A, Kauppinen A, Oikarinen S, Lehto K-M, et al. The detection and stability of the SARS-CoV-2 RNA biomarkers in wastewater influent in Helsinki, Finland. Science of the Total Environment. 2021;770.
  105. de Oliveira LC, Torres-Franco AF, Lopes BC, Santos BSÁS, Costa EA, Costa MS, et al. Viability of SARS-CoV-2 in river water and wastewater at different temperatures and solids content. Water Research. 2021;195.
  106. Singh M, Sadat A, Abdi R, Colaruotolo LA, Francavilla A, Petker K, et al. Detection of SARS-CoV-2 on surfaces in food retailers in Ontario. Current Research in Food Science. 2021;4:598–602.
  107. Blondin-Brosseau M, Harlow J, Doctor T, Nasheri N. Examining the persistence of human Coronavirus 229E on fresh produce. Food Microbiology. 2021;98.
  108. Le Guernic A, Palos Ladeiro M, Boudaud N, Do Nascimento J, Gantzer C, Inglard J-C, et al. First evidence of SARS-CoV-2 genome detection in zebra mussel (Dreissena polymorpha). Journal of Environmental Management. 2022;301.
  109. Castrica M, Balzaretti C, Miraglia D, Lorusso P, Pandiscia A, Tantillo G, et al. Evaluation of the persistence of SARS-CoV-2 (ATCC® VR-1986HKTM) on two different food contact materials: flow pack polyethylene and polystyrene food trays. LWT. 2021;146.
  110. Rizou M, Galanakis IM, Aldawoud TMS, Galanakis CM. Safety of foods, food supply chain and environment within the COVID-19 pandemic. Trends in Food Science and Technology. 2020;102:293–299.
  111. Can the sewers disclose the scale of COVID-19? [Internet]. [cited 2022 Apr 18]. Available from:
  112. Feng X-L, Li B, Lin H-F, Zheng H-Y, Tian R-R, Luo R-H, et al. Stability of SARS-CoV-2 on the surfaces of three meats in the setting that simulates the cold chain transportation. Virologica Sinica. 2021;36(5):1069–1072.
  113. Ji W, Wang W, Zhao X, Zai J, Li X. Cross‐species transmission of the newly identified coronavirus 2019‐nCoV. Journal of Medical Virology. 2020;92(4):433–440.
  114. Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infection, Genetics and Evolution. 2020;79.
  115. Lau SKP, Luk HKH, Wong ACP, Li KSM, Zhu L, He Z, et al. Possible Bat origin of severe acute respiratory syndrome coronavirus 2. Emerging Infectious Diseases. 2020;26(7):1542–1547.
  116. Görür N, Topalcengiz Z. Food safety knowledge, hygiene practices, and eating attitudes of academics and university students during the coronavirus (COVID‐19) pandemic in Turkey. Journal of Food Safety. 2021;41(5).
  117. Coronavirus disease 2019 (COVID-19) Situation Report – 32. [Internet]. [cited 2022 Apr 18]. Available from:
  118. Thomas MS, Feng Y. Consumer risk perception and trusted sources of food safety information during the COVID-19 pandemic. Food Control. 2021;130.
  119. Chang A, Schnall AH, Law R, Bronstein AC, Marraffa JM, Spiller HA, et al. Cleaning and disinfectant chemical exposures and temporal associations with COVID-19 – National poison data system, United States, January 1, 2020 – March 31, 2020. Morbidity and Mortality Weekly Report. 2020;69(16):496–498.
  120. Finger JAFF, Lima EMF, Coelho KS, Behrens JH, Landgraf M, Franco BDGM, et al. Adherence to food hygiene and personal protection recommendations for prevention of COVID-19. Trends in Food Science and Technology. 2021;112:847–852.
  121. Gil MI, Selma MV, López-Gálvez F, Allende A. Fresh-cut product sanitation and wash water disinfection: Problems and solutions. International Journal of Food Microbiology. 2009;134(1–2):37–45.
  122. Pezzuto A, Belluco S, Losasso C, Patuzzi I, Bordin P, Piovesana A, et al. Effectiveness of washing procedures in reducing Salmonella enterica and Listeria monocytogenes on a raw leafy green vegetable (Eruca vesicaria). Frontiers in Microbiology. 2016;7.
  123. Bailey ES, Curcic M, Sobsey MD. Persistence of Coronavirus Surrogates on Meat and Fish Products during Long-Term Storage. Applied and Environmental Microbiology. 2022;88(12).
  124. Chen C, Feng Y, Chen Z, Xia Y, Zhao X, Wang J, et al. SARS‐CoV‐2 cold‐chain transmission: Characteristics, risks, and strategies. Journal of Medical Virology. 2022;94(8):3540–3547.
  125. Bai L, Wang Y, Wang Y, Wu Y, Li N, Liu Z. Controlling COVID-19 transmission due to contaminated imported frozen food and food packaging. China CDC Weekly. 2021;3(2):30–33.
  126. Anelich LECM, Lues R, Farber JM, Parreira VR. SARS-CoV-2 and risk to food safety. Frontiers in Nutrition. 2020;7.
  127. Chin AWH, Poon LLM. Stability of SARS-CoV-2 in different environmental conditions – Authors’ reply. The Lancet Microbe. 2020;1(4).
  128. Qian J, Yu Q, Jiang L, Yang H, Wu W. Food cold chain management improvement: A conjoint analysis on COVID-19 and food cold chain systems. Food Control. 2022;137.
  129. Alam MK, Keiko Y, Hossain MM. Present working conditions in slaughterhouses and meat selling centres and food safety of workers in two districts of Bangladesh. Pertanika Journal of Social Sciences and Humanities. 2020;28(2):867–881.
  130. Mayurnikova LA, Koksharov AA, Krapiva TV. Food safety practices in catering during the coronavirus COVID-19 pandemic. Foods and Raw Materials. 2020;8(2):197–203. DOI:
  131. Maldonado-Siman E, Bernal-Alcántara R, Cadena-Meneses JA, Altamirano-Cárdenas JR, Martinez-Hernández PA. Implementation of quality systems by Mexican exporters of processed meat. Journal of Food Protection. 2014;77(12):2148–2152.
  132. Maldonado-Siman E, Martínez-Hernández PA, Ruíz-Flores A, García-Muñiz JG, Cadena-Meneses JA. Implementation of HACCP in the Mexican poultry processing industry. IFIP Advances in Information and Communication Technology. 2009;295:1757–1767.
  133. Nyarugwe SP, Linnemann AR, Ren Y, Bakker E-J, Kussaga JB, Watson D, et al. An intercontinental analysis of food safety culture in view of food safety governance and national values. Food Control. 2020;111.
  134. Grace D. Food safety in low and middle income countries. International Journal of Environmental Research and Public Health. 2015;12(9):10490–10507.
  135. Mohammadi‐Nasrabadi F, Salmani Y, Esfarjani F. A quasi‐experimental study on the effect of health and food safety training intervention on restaurant food handlers during the COVID‐19 pandemic. Food Science and Nutrition. 2021;9(7):3655–3663.
Как цитировать?
Arriaga-Lorenzo P, de Jesús Maldonado-Simán E, Ramírez-Valverde R, Martínez-Hernández PA, Tirado-González DN, Saavedra-Jiménez LA. Cold chain relevance in the food safety of perishable products. Foods and Raw Materials. 2023;11(1):116–128.
О журнале