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Abstract: A stochastic model studying the formation and destruction of a dispersed protein gas–liquid system (foam) 
is proposed. The regularities governing the formation of dispersed systems strongly depend on the conditions of a 
chemical engineering or engineering process, and both the formation of a foam and the destruction of the obtained 
foam layer occur simultaneously in the process of foam generation. Since a necessary condition for the construction 
of a stochastic model is the availability of statistical data, which provide the estimation of the number of both 
forming and bursting bubbles, the method of such a calculation is of topical interest. The model enables the 
description of the process state at every time moment of the first cycle. One of the characteristics of a foam is its 
dispersion, so the random variable characterizing the number of bubble per unit volume is introduced to study the 
processes of foam formation. The mathematical expectation, dispersion, and also the foam destruction rate function 
are proposed as a basis for the calculation of foaming efficiency characteristics. Since the model is formalized by a 
set of differential equations, it can also be used in the simulation modeling of the foaming process. The first cycle of 
the formation and destruction of a protein foam has systematically been studied. The constructed stochastic model 
has allowed the mathematical expectation and dispersion of the number of protein foam bubbles per unit volume to 
be calculated at any time moment of gas saturation within the first cycle. It has been shown that the applied 
numerical solutions of the differential equations are in good agreement with the analytical solutions given by simple 
formulas convenient for engineering calculations. A method of estimating the model parameters has been developed. 
The proposed model has allowed the quantitative description of the foaming process both on average and by states. It 
has been established that the time of the formation of a protein foam in a rotor-stator device at specified process 
parameters is advisable to be limited by the moment, at which the highest foam destruction rate is attained. 
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INTRODUCTION 
 

Dispersed gas–liquid systems (foams) in both the 
liquid and solid form find wide application in different 
industries (oil-and-gas, food, and metallurgical 
industries, firefighting, etc.). The mechanism of the 
foam formation process is complicated due to the 
combined effect of numerous physicochemical, 
physicotechnical, and other factors. The regularities 
governing the formation of dispersed systems strongly 
depend on the conditions of a chemical engineering or 
engineering process, and both the formation and 
destruction of an obtained gas–liquid layer occur 
simultaneously in the process of foam generation      
1–14]. As a consequence, these features complicate to 
a great extent the mathematical description of the 
foaming process [3–5, 15–18]. 

Among the principal characteristics of a foam are 
the expansion factor (foam-to-solution volumetric 
ratio), the dispersion (air bubble size), and the stability 
(time period from the formation of a foam to its partial 
or complete destruction) [3–8]. The foam stability 
applicable to any foam independently of its purpose 
may be considered as a basic characteristic. 

It is known that foams based on protein solutions, 

an increase in the concentration of which improves the 
foaming properties of a system as a whole, are highly 
stable 9, 10, 19–24. The formation of bubbles 
generally depends on the composition of a foamed 
solution (foaming agent) and the intensity of a 
mechanical action, whereas their destruction proceeds 
under the action of both internal and external forces. 
For this reason, the entire foam generation process 
representing a process flow may be considered as a 
dynamic system of flows or a queueing system. This 
queueing system will be studied by the methods of 
stochastic processes and queueing theory 25–27. 

The objective of this study is to create a stochastic 
model, which would systematically describe the 
processes of foaming in protein solutions and 
determine the time of the formation of a foam of 
specified quality. 

 
OBJECTS AND METHODS OF STUDY 

 

Foam formation regularities were studied via the 
gas saturation of a protein solution (skim milk protein 
concentrate; protein mass fraction, 4.4%) in a rotor-
stator device (GID-100/1 hydrodynamic disperser, 
which was developed, manufactured, and mounted in 
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the All-Russian Research Institute of Dairy Industry) at 
a rotor revolution speed from 1750 to 3000 rpm, a 
working chamber filling coefficient of 0.3, a rotor-
stator gap of 0.1 mm, and a processed solution 
temperature of 13  2°C. Control measurements were 
performed each three minutes after the freezing of 
samples in a nitrogen atmosphere and their transmitted-
light microscopy on an AxioVert.A1 microscope with 
an AxioCamERc5 camera and a photo recording block. 
The number of bubbles was calculated from digital 
images with the use of corresponding software (the 
comparison of automatic and manual calculation 
results for the number of bubbles in the frozen samples 
shows that the former were underestimated by 18% on 
average). 

Mathematical models were constructed using the 
tools of probability and stochastic process theory and 
queueing theory (in combination with the methods of 
mathematical statistics, mathematical analysis, and 
differential equations) [25–28]. 

The effect of the time of the gas saturation of a 
protein solution was studied using the stochastic model 
describing the efficiency of the process on average 
[29–34]. The mathematical expectation (average value) 
Mi (t) of the random value characterizing the number of 
particles (bubbles) in the dispersed phase of a foam 
were considered at a time moment t on condition that 
their number at the initial time moment was Mi (0) = i, 
and the dispersion of this number was Di (t), Di (0) = 0, 

[0, )t  , 0,  1,  2,  ...i  . 
A foam generator was considered as an inex-

haustible bubble (hereinafter, arrival) generation source 
characterized by the parameter , and the bubble 
destruction (hereinafter, arrival service) was 
characterized by the parameter . 

Model. A queueing system, to which arrivals 
entered, was considered. The number of arrivals, which 
has entered the system for the time t, is a random value 
 satisfying the Poisson process 
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where  is the intensity determined as the average 
number of generated bubbles per unit time, [0, )t  ,  
k = 0, 1, 2,…. 

An arrival that has just entered the system is 
immediately served. The service time is a random 
value  distributed in compliance with the exponential 
law 

 

tetP   1)( , 
 

where β = 1/tav is the intensity of service, and tav is the 
average arrival service time determined as an average 
bubble life time. 

The served arrival leaves the system. It is required 
to calculate the mathematical expectation Mi (t) and the 
dispersion Di (t). 

The model was formalized by a “birth-and-death” 
linear differential equation set, from which a 
differential equation set for the direct calculation of  

Mi (t) and Di (t) [29–34] can be deducted in the form 
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with the initial conditions 
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The solution of set (1) with consideration for Eq. (2) 

has the form [34] 
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If a steady-state regime is attained rather quickly, it 

is convenient to perform express analysis with the 
formulas 
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Further studies have shown that the formation of 

bubbles may be considered as a Poisson process [34], 
and their destruction is a Poisson process only in the 
first approximation. 

Really, it is known that the foam destruction 
dynamics can conditionally be divided into the three 
stages: the initial stage is slight destruction, when 
destruction factors have a minimal effect on a foam, 
and the destruction rate gradually increases, the active 
stage is characterized by a considerable increase in the 
destruction rate up to its maximum value and the 
greatest effect of each destruction factors, including the 
effect of their combination, and the attenuation stage is 
characterized by a decrease in the destruction rate of 
the stage 3–5. 

The stability of a foam depends on the destruction 
rate, so the parameter β = y(t), which has a rate 
dimension and depends on the foaming time moment, 
may be considered as its characteristic in our model. 
As is has been turned out, the destruction of a protein 
foam is most efficiently described by the function [34] 

 

2 21
1

1

( ) exp( ( ) / ),Ay t B t a b
b

                (5) 

 
where A1, B, a, and b1 are non-negative numerical 
parameters found from statistical data, B >0, y(t) >0, 

[0, )t   . 
Moreover, it has been established that the 

boundaries between the foam destruction stages can be 
determined by the critical points found for the function 
y(t) using the standard differential calculation methods. 
For the convenient application of the function y(t) in 
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engineering calculations, it has been noted that it is 
similar to the normal distribution density tabulated in 
the normalized form, so it is written below for 
convenience of calculations (instead of y(t) at 

1 / ,A A   1 2b b )  that 
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RESULTS AND DISCUSSION 

 

The principal technical parameters of most foaming 
devices are the working body revolution speed, the 
working chamber filling coefficient, and the processing 
time and temperature. It is known that an increase in the 
revolution speed  of the working body of a foam 
generator can intensify the foaming process (decrease 
the time of the action on a solution) 4, 5, 9, 10, 12–14, 
16, 21, although an intense mechanical action on the 
formed system also causes its destruction in this case. 
All these factors in combination have allowed the 
selection of just this characteristic to study its effect on 
the dynamics of the formation and destruction of a foam. 
The values of  = 1750, 2000, 2500, 3000 rpm were 
considered, and the model parameters corresponding to 
them were denoted as αv, βv. The results of observations 
at time moments t = 3m min, m = 1, 2, 3, 4, 5, depending 
on the revolution speed are plotted in Fig. 1. 
 

 
 
Fig. 1. Number of bubbles per unit volume at time 
moments t = 3m, m = 1, 2, 3, 4, 5 at  of (1) 1750,      
(2) 2000, (3) 2500, and (4) 3000 rpm. 
 

Assuming that there is almost no destruction at the 
first minute of generation, αv = 25000, 33250, 49500, 
63700 1/min was determined from experimental data. 
The application of both the average value and the 
mean-square deviation enabled the estimation of the 
range of this parameter for each of the foaming 
processes. The obtained ranges of the parameter αv are 
11500–38400, 12500–53900, 13200–77800, and  
22000–105000 1/min, within which the values of this 
parameter fall during the repeated series of experiments, 
at v = 1750, 2000, 2500, 3000, respectively. 

It is obvious (Fig. 1) that foaming must be limited 
by 3 min. However, taking into account that just this 
interval was primarily selected as a time period 
between measurements in experimental studies, it 

might occur in reality that an “important moment” had 
merely been missed, and the repetition of all the series 
of studies with shorter intervals between measurements 
with consideration for necessary reproducibility would 
lead to considerable time, energetic, and material 
expenditures, it was decided to perform a theoretical 
study within the framework of already available 
empirical data and then repeated experimental studies 
of smaller series. 

The formation of a foam was studied from the 
viewpoint of creating the conditions for its 
preservation. To accomplish this, it is necessary to 
minimize the effect of the factors, which lead to the 
destruction of a foam. 

Let us study the foam destruction processes. The 
parameter (intensity)  in Eqs. (3) is determined as the 
average number of forming bubbles per unit time, and 
the parameter  was interpreted also as the average 
number of bubbles bursting for the same unit time. 

The direct estimation of the number of bubbles 
bursting under the action of different factors presents a 
certain difficulty, so the values of the parameter  were 
fitted at fixed time moments. The differences between 
the generated number of bubbles and their actual 
number were taken into account. Then the fraction with 
respect to the actually generated flow of bubbles per 
unit time was calculated, e.g., 

 

2500
49500 3 146324(3) : 3 0.00496

146324
  

   1/min. 
 

The values of the parameter βv. at time moments      
t = 3m are plotted in Fig. 2. Their analysis makes it 
possible to say that the second oscillatory cycle 
characterized by the growth of the foam destruction 
rate after the period of descent begins after 12 min of 
the process. For this reason, it is inadvisable to study 
the foaming process for more than 12 min. Moreover, 
the highest values of empirical data for all the 
presented variants correspond to t = 6 min. Taking into 
consideration the time interval between measurements, 
it is possible to say that the greatest destructibility of a 
foam is really attained in the neighborhood of this point 
on the time axis with a radius of less than 3 min. At 
this stage, the interval (0, 9) with the center at t = 6 is 
taken for further studies. 

 

 
 
Fig. 2. Parameter βv versus time t = 3m at ν of (1) 1750, 
(2) 2000, (3) 2500, and (4) 3000 rpm. 
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Since β = 1/tav is an averaged characteristic, this 
raises the question on what time interval should it be 
considered. Let us cite the values (Fig. 3) calculated for 
the average number of bubbles per unit foam volume 
by Eq. (3) for the parameter  calculated on the 
intervals to 3, 9, and 12 min. It is obvious that the 
consideration of the averaged constant parameter  
enables the description of the number of foam bubbles 
generated by a rotor-stator device only on a limited 
time interval. To obtain a more precise description of 
the considered characteristic Mi (t), it is necessary to 
express the parameter β = β(t) in term of time, e.g., by 
function (5). Thus the specified functional dependence 
has allowed not only the study of trends in the change 
of the foam destruction rate, but also the determination 
of time moments important in this regard and, thereby, 
the recommended gas saturation time for a protein 
solution. In other words, the common regularities of 
the destruction of a protein foam are revealed from the 
results of studying a particular case. 

Hence, taking into account the physical meaning of 
the parameter β = β(t), the functional dependence 
determining it will enables the study of the foam 
destruction process within the first oscillatory cycle. 
The values of βv were approximated by the function 
β(t), the form of which enabled the detection of the 
time moments important for the foam formation and 
destruction processes (the physicochemical principles 
of which are explained in [3–5]) due to the presence of 
singular points (extrema, inflection points, etc.). 
Several variants of the approximation of the function 
β2500 = β(t) in the form of Eq. (5) are shown in Fig. 4, 
and the error with consideration for the time moment of 
12 min variates from 15 to 20%, respectively. When a 
shorter time interval is considered, the precision 
increases by nearly two times. Similar results were 
obtained for the other studied gas saturation processes 
(ν = 1750, 2000, 3000 rpm). 

 

 
 

Fig. 3. Number of bubbles versus time t in the rotor-stator 
processing of a protein solution for (1) experimental data 
and β2500 of (2) 0.0050, (3) 0.4929, and (4) 0.5476 1/min. 
 

Let us determine the time moment t0 (located within 
the interval from 2 to 5 min, as reflected by Fig. 4), from 
which the foam destruction rate begins to intensively 
grow. 

 
 
Fig. 4. Time function β(t) calculated (1) from 
experimental data and at (2) A = 7.50, B = 0.01, a = 6.90, 
b = 2.10, (3) A = 7.20, B = 0.01, a = 7.00, b = 2.00, and 
(4) A = 6.90, B = 0.01, a = 7.10, b = 1.80. 

 
Using the differential calculation methods [34], 

determining the derivatives β(t), β(t), and the 
functions β(t), and setting them equal to 0, the greatest 
time t0, before which the formation of a foam should be 
stopped (i.e., before the highest foam destruction rate is 
attained), was found. Hence, the point t = a determines 
the maximum of the function β(t), the inflection point 
of the function β(t), and the extremum of β(t), t = a±b 
is the inflection points of β(t) or the extremum of the 

function β(t), and 3t a b   is the inflection points 
of β(t) and the extrema of β(t). 

Note that full symmetry is hardly probable in reality 
(Fig. 4). To estimate the deviation from the symmetry 
point, if necessary, it is also possible to use the third 
moment about the mean for the calculation of the 
asymmetry coefficient. The corresponding formula is 
derived by solving the differential equation, which is 
additional to set (1) and obtained by the same method 
as for the equations of the mathematical expectation 
and dispersion [29–32]. The found functional 
dependence β(t) was substituted into the set of 
differential equations describing the mathematical 
expectation and dispersion to obtain 
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with initial condition (2). Note that the derivation of 
differential equations immediately for the numerical 
characteristics is insensitive to the form of an equation, 
i.e., independent of whether the parameters  and  are 
constants or time functions, although this can not be 
ensured for the set of differential equations of system 
probabilities, thus accentuating the advantages of the 
derivation of differential equations immediately for the 
numerical characteristics [29–34]. However, the 
precise analytical solution of set (6) is of no interest 
due to its cumbersomeness, as it is presented in the 

t, min 

t, min 

β(t) 
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form of quadratures or a series, so the specialized 
Mathematica 5.2 software was used to solve the set by 
numerical methods. The obtained results are plotted in 
Fig. 5. 
 

 

 
 
Fig. 5. Number of bubbles versus time t in the rotor-
stator processing of a protein solution for (1) experi-
mental data, (2) A = 7.50, B = 0.01, a = 6.90, b = 2.10, 
(3) A = 7.20, B = 0.01, a = 7.00, b = 2.00, and  
(4) A = 6.90, B = 0.01, a = 7.10, b = 1.80. 
 

From Fig. 4 it can be seen that the empirical curves 
attain the highest value at a time moment t0 within the 
interval [6, 8], i.e., it is unadvisable to perform the 
process of generation for longer than 8 min, as it 
appears to be just the time moment, in the 
neighborhood of which the greatest combined action of 
all the destruction factors takes place. This is 
confirmed by Fig. 5. The solution of set (1) with the 
variable parameter β = β(t) in the form of Eq. (5) is 
plotted in Fig. 4. The obtained results for the different 
values of the parameters of the function β(t) describe 
experimental data at a various precision, which 
decreases with increasing time interval, and each of 
them rather precisely describes the overall character of 
the process on the interval to 9 h. For this reason, after 
studying the effect of the behavior of the function β(t) 
on the foam destruction dynamics, the foam generation 
process is considered as a whole and after destruction. 
From Fig. 5 it can be seen that the interval, on which 
the foaming process should be interrupted, is [3, t0]. 
Similarly, the function M(t) attains the lowest value at 
a maximum point t1 of the function β(t), and it is 
obvious that this is inadmissible in the foam generation 
process. 
From the comparison of the results shown in Figs. 4 
and 5 it is obvious that the singular points of the 
function β(t) are also singular for the function M(t), so 
the parameter a is determined by the time moment, at 
which a foam is maximally destructed, and t = a±b is 
the time moment, at which the destruction rate begins 
to intensively change, namely, a-b corresponds to an 
intensive increase in the destruction rate, a+b 

corresponds to its intensive decrease, 3t a b   are 
the beginning moments of stable acceleration in the 
foam destruction rate, i.e., intensive acceleration 

( 3t a b  ) or deceleration ( 3t a b  ). In this 

case, the time interval [ 3 , ]a b a b  , to which the 
terminal time moment of the foaming process must 
belong, is unequivocally selected. As is evident, the 
value 3t a b   is ideal. For the considered function 
β(t) (where A = 7.50, B = 0.01, a = 6.90, b = 2.10,           
A = 7.20, B = 0.01, a = 7.00, b = 2.00, and A = 6.90,       
B = 0.01, a = 7.10, b = 1.80, Fig. 4), such time intervals 
are [3.26, 4.80], [3.54, 5.00], and [3.98, 5.30], and the 
“ideal” terminal time moments are 3.26, 3.54, and 3.98 
min, respectively (note that the error of the description 
of the protein foam destruction rate by the function β(t) 
on the interval from 0 to 9 min was 15, 18, and 20%, 
respectively). 

Similarly, the intervals [3.45, 4.91], [3.24, 4.76], 
and [2.36, 4.25] are obtained via the approximation 
with the function βv(t) at  = 1750, 2000, and 3000 rpm 
with an error of less than 18% on the interval from 0 to 
9 min. The recommended terminal time moments       
are  3.5, 3.3, and 2.4 min, respectively. 

Note that the difficulties arising in the derivation of 
the analytical dependence are resolved by finding a 
numerical solution, which unfortunately does not 
enables the study of process trends and the system 
approach to the study of the process, but allows the 
calculation of numerical results for the average 
parameters at β = β(t). In this case, it is almost 
impossible to obtain any formulas convenient for the 
application in engineering practice, but, as shown by 
performed studies, it is quite realistic. The suggested 
hypothesis on the possibility of the application of     
Eqs. (3) with constant values of the parameter β 
averaged over each interval (in our case, these intervals 
were determined via the regular measurements of 
samples) was confirmed after the comparison of the 
experimental data approximation results with the 
theoretical values, which are the solutions of sets (1) 
and (6) with initial conditions (2), where ( )t   and 
β = β(t), respectively. In this case, it is evident that the 
shorter is a considered interval, the smaller is the 
difference between the averaged parameter  and it real 
value. Note that the application of differential 
calculation to the analysis of the function Mi(t) allows 
(due to that ( ) 0t  ) the estimation of its maximum 
value attained at a certain point t0 from the first 
equation of set (6) using the inequality 

 

0
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At a constant value of the parameter , the function 
M(t) attains the highest value for such an argument, at 
which the function β(t) takes the lowest value on the 
interval [0, 9). Let us approximate the experimental 
data on the number of foam bubbles per unit volume by 
the “pieces” of the function M(t) with the constant 
parameter   [25, 28]: 
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1
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where T is a considered interval. The results plotted in 
Figs. 4 and 6 demonstrate the nearly identical descript-
tion of experimental data for both theoretical 
dependences on the interval [0, 4). The approximation 
error does not exceed 4%, but an increase in the length 
of the considered interval appreciably rises it up to 
30% and more. Hence, the formulas of set (1) at 

( )t   or simple formulas (3), where β is constant, 
can be used for the analysis of the foaming process on 
the interval [0, t0). 
 
 

 
 
Fig. 6. Number of bubbles versus time t in the rotor-
stator processing of a protein solution at  )(t  for 
(1) experimental data, (2) A = 7.50, B = 0.01, a = 6.90,  
b = 2.10, (3) A = 7.20, B = 0.01, a = 7.00, b = 2.00, and  
(4) A = 6.90, B = 0.01, a = 7.10, b = 1.80. 
 

The obtained data were further used as a basis to 
formulate the constraints of the time of action on a 
processed mass. Comparing the experimental data and 
the values of the function Mi(t) expressed by the 
equation of set (1) with the variable parameter β(t) in 
the form of Eq. (5) on the intervals from 0 to 4.8, 5.0, 
and 5.3 (Fig. 6), it has been ascertained that the error is 
from 8 to 2%, respectively, and does not exceed 3% on 
the interval [0, 4). This allows the error values to be 
considered as falling within statistical disperancy. The 
foaming process was studied for t0 minutes. The 
interval from 0 to 4 was partitioned with unit steps, at 
each of which the average value of the parameter β was 
determined, and the functions Mi(t) and Di(t) (Fig. 7), 
which are the solution of set (3), were considered. The 
preliminary analysis of the experimental data (Fig. 1) 
shows that the average values of the parameter β(t) = β 
on this time interval nearly coincide and equal to   
0.010 1/min at a rotor revolution speed of 3000 rpm, 
except the case corresponding to the generation of a 
protein concentrate foam. Knowing the capacity of the 
used equipment for the foaming of a protein solution 
(the parameter ) and using Eqs. (3) for the description 
of the process, the range ( ( ) ( ); ( ) ( ))

i i i i
M t D t M t D t    

 

for the number of bubbles per unit volume was 
obtained (Fig. 7). 

 
 

 
 
Fig. 7. Number of bubbles versus time t in the rotor-
stator processing of a protein solution for (1) experi-
mental data, (2) M0(t), α = 49500 1/min, β = β(t),  
A = 7.50, B = 0.01, a = 6.90, b = 2.10, (3) M0(t),  
α = 49500 1/min, β = β(t), A = 7.20, B = 0.01, a = 7.00, 
b = 2.00, (4) M0(t), α = 49500 1/min, β = β(t), A = 6.90, 
B = 0.01, a = 7.10, b = 1.80, and (5,6) boundary M0(t), 
α = 13270, 77800 1/min, β = 0.010 1/min 

 
Note that the experimental data on the number of 

bubbles per unit volume in the repeated series of 
experiments on the rotor-stator processing of a protein 
solution (skim milk protein concentrate with an initial 
mass fraction of solids of 9.2%) at 1750, 2000, and 
2500 rpm (Fig. 7) will also fall into this interval with a 
near unitary probability. The case corresponding to 
3000 rpm is of no interest, as excess hydrodynamic 
action leads to the considerable destruction of a foam 
due to the rotation of the device’s working body alone. 

Hence, the first cycle of the process of protein foam 
formation and destruction has systematically been 
studied. The constructed stochastic model has allowed 
the mathematical expectation and dispersion of the 
number of protein foam bubbler per unit volume to be 
determined at a random time moment of gas saturation 
within the first cycle. It has been shown that the 
applied numerical methods are in good agreement with 
the analytical methods, which give simple formulas 
convenient for engineering calculations. A method of 
determining the parameters of this model and the 
dependence of the parameter β(t) has been developed. 
The proposed model has enabled the quantitative 
description of the foaming process both on average and 
by states. It has been established that the protein 
foaming time in a rotor-stator device at specified 
process parameters is advisable to be limited by the 
moment, at which the highest foam destruction rate is 
attained. 
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