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Abstract:
The industrial water contamination with synthetic dyes is currently a cause for concern. This paper introduces composite 
hydrogels as alternative scavengers of soluble dyes.
This research used kinetic models and adsorption isotherms to test composite exopolysaccharide hydrogels extracted from 
Nostoc commune V., pectin, and starch for their ability to remove methylene blue from water. 
The exopolysaccharides demonstrated a rather low extraction yield and a crystallinity percentage of 38.21%. However, the 
crystallinity increased in the composite hydrogels (48.95%) with heterogeneous surface. The pseudo-second-order kinetic model 
served to explain the adsorption mechanism at pH 8 and pH 11, while the Elovich model explained the adsorption mechanism at 
pH 5. When in acid fluid, the hydrogels had a heterogeneous surface, whereas alkaline fluid resulted in a homogeneous surface. 
The Temkin adsorption model showed a good fit in the treatments.
At a basic pH value, composite exopolysaccharide-based hydrogels showed good results as scavengers of low-concentration 
methylene blue.
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INTRODUCTION
The term microalgae refers to both eukaryotic 

(microalgae) and prokaryotic (cyanobacteria) microga- 
nisms that perform oxygenic photosynthesis. These or- 
ganisms live in aquatic and terrestrial habitats. They 
produce various compounds, e.g., polyunsaturated fatty  
acids, pigments, proteins, some enzymes, and exopo- 
lysaccharides. These compounds can be applied in va- 
rious biotechnology sectors, i.e., food, energy, health, 
and biomaterials [1, 2].

Cyanobacterial exopolysaccharides possess unique 
biochemical properties due to their high molecular 
weight, anionic properties, and acidic profile [3]. Exopo- 
lysaccharides extracted from Nostok commune V. can 
be applied in biomedicine and food industry to produce 

hydrogels and films. However, the chemical structure  
of these exopolysaccharides is not yet known [3, 4]. 

Hydrogels consist of three-dimensional networks of 
intertwined polymer chains that are able to absorb and 
retain water molecules and solutes, including such ionic 
dyes as methylene blue [5].

Methylene blue is a cationic thiazine dye used in 
textile industries. However, it affects human health by 
causing asthma, cancer, and mutations [6]. Moreover, it 
affects the growth of aquatic organisms and generates 
mutagenic effects in fish [7, 8]. 

Industrial development facilitates economic pros- 
perity but causes water pollution [9, 10]. This type of  
pollution occurs because various industries that  
deal with textile, dyes, and pharmaceuticals discharge 
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effluents that usually contain dyes and/or heavy me- 
tals [11]. For example, more than 700 000 tons of dyes 
are produced annually, of which approximately 1–2% 
are drained during production and around 10–15% are 
eliminated as effluents during application [12].

The list of modern wastewater treatment methods 
includes chemical precipitation, filtration, reverse osmo- 
sis, and photo-degradation [13–16]. However, not only 
are all these methods expensive and complex, but they 
also generate secondary products [17]. 

As a result, scientists are on the look for new ab- 
sorbents, such as hydrogels, that could remove conta- 
minants, e.g., dyes, from wastewater [18, 19].

This research extracted exopolysaccharides from the 
N. commune to prepare a new composite hydrogel that 
would remove soluble methylene blue.

STUDY OBJECTS AND METHODS
Materials. Pectin, starch, and calcium chloride di- 

hydrate were purchased from Sigma-Aldrich. Petroleum 
ether, chloroform, propanol, ethanol, and methylene blue 
were obtained from Merck. The exopolysaccharides we- 
re extracted from cyanobacteria Nostoc commune V. 
collected in Conococha Lake, Province of Bolognesi, 
Ancash-Peru. These cyanobacteria were dried, crushed, 
and stored in an amber jar at room temperature.

Extracting the exopolysaccharide. We defatted 2 g  
of dry powder by maceration with 100 mL of petroleum 
ether, followed by filtering and oven-drying. This pro- 
cess was repeated with chloroform and then with etha- 
nol. The extraction of the exopolysaccharide followed 
the procedure described by Rodríguez et al. [20]. The 
extractant was precipitated with propanol for subsequ- 
ent drying, grinding, and storage in an amber bottle. 
The exopolysaccharide yield (Ye, %) was calculated as  
follows:
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where W1 is the weight of exopolysaccharide, g; and W2 
is the weight of N. commune dried powder, g.

Preparation of hydrogels. We diluted 0.05 g of exo- 
polysaccharide in distilled water to mix it with a 
pectin-starch solution in a ratio of 2:0.5, according to 
the methodology described by Dafe et al. [21]. After 
that, we poured the resulting mix drop by drop into a 
0.2 M solution of CaCl2∙2H2O under constant stirring at  
room temperature. The hydrogels were filtered and wa- 
shed with distilled water. Before each application, the 
hydrogels were dried at 30°C for 36 h until a constant 
weight was obtained.

Characterization. The FTIR-ATR spectra (600 to 
4000 cm–1) were obtained using a Nicolet iS10 Thermo 
Scientific spectrophotometer. The thermogravimetric 
curves were gathered in an STA 6000 PerkinElmer de- 
vice using 5.0 ± 0.1 mg of the sample in an N2 atmo- 
sphere. The flow rate was 20 mL/min, and the tempe- 
rature was between 20 and 600°C with a heating rate 
of 10°C/min. The XRD diffractograms were obtained 

using a D2 Phaser (Brüker) equipment in a range of 
10° to 60°. The crystallinity (%) index was determined 
using the ratio between the crystalline area and the total 
area (Eq. (2)). The specific surface area was determined 
using a Gemini VII 2390t micrometer with the nitrogen 
adsorption and desorption technique. The SEM images 
were obtained with an FEI Inspect S50 microscope. The 
samples were gold-plated in an 11430E-AX (SPI Sup- 
plies) high vacuum metallizer:
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Removing methylene blue. We added 0.1 g of hydro- 
gel to 50 mL of methylene blue solution. For isother- 
mal studies, the methylene blue concentration was 1.0–
1.5×10–6 mol/L at 25°C. The experiment involved five-
time intervals (15, 30, 60, 90, and 120 min) and three 
pH levels (5, 8, and 11). The pH values were adjusted 
with NaOH (0.1 mol/L) and HCl (0.1 mol/L). The ab- 
sorbance values (λmax = 668 nm) were obtained using a 
Thermo Scientific/Spectronic GENESYS 20 Visible spec- 
trophotometer by quantifying the adsorption capacity  
(qe, mg/g) and removal percentage (%):

                       

    100
  .    

Weight of exopolysaccharideExopolysaccharide yield
Weight of N communedried powder

= ×  

 

 100areaCrystallinity Crystalline area
Total

 = × 
 

 

( )0   e
e

V C C
q

W
× −

=  

0

0

 
  100eC CRemoval

C
−

= ×  

 
1  
  

e e

e L max max

C C
q K q q

= +
×

 

 
1    e elnq lnb lnC
n

= +  

 ln   e e m
T

RT RTq C lnk
b b

= +  

0

1 
1    L

L

R
K C

=
+ ×

 

 

11   t

e

qln k t
q

 
− = − × 

 
 

 

2
 

1 1 
  e t e

k t
q q q

− = ×
−

 

 

 
1 1lntq lntα
β β β

     
= × + ×     
     

 

                          (3)

                   

    100
  .    

Weight of exopolysaccharideExopolysaccharide yield
Weight of N communedried powder

= ×  

 

 100areaCrystallinity Crystalline area
Total

 = × 
 

 

( )0   e
e

V C C
q

W
× −

=  

0

0

 
  100eC CRemoval

C
−

= ×  

 
1  
  

e e

e L max max

C C
q K q q

= +
×

 

 
1    e elnq lnb lnC
n

= +  

 ln   e e m
T

RT RTq C ln k
b b

= +  

0

1 
1    L

L

R
K C

=
+ ×

 

 

11   t

e

qln k t
q

 
− = − × 

 
 

 

2
 

1 1 
  e t e

k t
q q q

− = ×
−

 

 

 
1 1lntq lntα
β β β

     
= × + ×     
     

 

                    (4)

where C0 and Ce are the initial and V equilibrium con- 
centrations of methylene blue, mg/L, respectively; W is  
the volume of the solution, L; W is the mass of the hyd- 
rogel, g.

Isotherm and kinetic models. The adsorption iso- 
therm illustrates the mobility or retention of a substance 
using a solid phase at a constant pH and temperature. 
The Langmuir isotherm (Eq. (5)) is an empirical model 
that describes the adsorption process on a homogene- 
ous surface, forming a single layer without lateral in- 
teraction between the absorbed molecules. On the cont- 
rary, the Freundlich isotherm (Eq. (6)) assumes that the 
adsorption is carried out on a heterogeneous surface 
via a multilayer process, while the Temkin isotherm  
(Eq. (7)) considers the interaction between the adsorbent 
and the adsorbate: 
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where Ce is the adsorbate equilibrium concentration, 
mg/L; qe is the adsorbed amount at equilibrium, mg/g; 
qmax is the maximal amount of adsorbed surfactant, mg/g;  
KL is the Langmuir constant, L/mg; b is the adsorption 
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capacity, L/mg; 1/n is the adsorption intensity or sur- 
face heterogeneity; R is the universal gas constant,  
J/mol/K; T is the temperature, K; bT is the Temkin 
constant related to sorption heat, J/mol; km is the Temkin 
isotherm constant, L/g. 

Finally, the separation factor or equilibrium para- 
meter (Eq. (8)), denoted as RL, checks if the adsorption 
is favorable (RL < 1) or unfavorable (RL > 1):
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The pseudo-first-order (Eq. (9)) and pseudo-second-
order (Eq. (10)) kinetic models differentiated the kinetic 
equations according to the adsorption capacity affected 
by the initial concentration of the dye. The Elovich 
model (Eq. (11)) assumes that the adsorbent surfaces 
are heterogeneous, and adsorption is performed in a 
multilayer process:
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where qe is the amount of the adsorbate at equilibrium, 
mg/g; qt is the maximal uptake of adsorbate, mg/g; k1 
is the pseudo-first-order rate constant; k2 is the pseudo- 
second-order rate constant; t is the contact time with 

adsorbent, min; α is initial sorption rate, mg/g/min; β is 
the extent of surface coverage and activation energy for 
chemisorption, g/mg [22, 23].

RESULTS AND DISCUSSION
Exopolysaccharide profile. The exopolysaccharide 

obtained from the Nostoc commune V. had a brown-
amber color (Fig. 1a); the extraction yield was 25% dw. 
However, Wang et al. managed to obtain a much greater 
yield of 96.7% [24].

X-ray analysis. The X-ray diffractogram (Fig. 1b)  
showed a broad peak at 20° and a bun-shaped curve,  
which suggested the non-crystallinity of the exopoly- 
saccharides extracted from cyanobacteria [20]. This re- 
sult was found consistent because the exopolysaccharide 
had crystallinity of 38.21% (Fig. 2b).

Thermogravimetry of exopolysaccharides. Figure 1c 
presents the TG thermogravimetric curve of the exopo- 
lysaccharide with mass losses assigned to the following 
thermal events: dehydration, depolymerization, degra- 
dation, and carbonization [20]. Table 1 shows the percen- 
tage of mass loss in each thermal event, with their 
respective temperature intervals.

FTIR of exopolysaccharides. Figure 1d illustrates 
the FTIR spectrum of the exopolysaccharide sample. 
The spectrum showed signals at 3325 cm–1 (hydroxyl 
groups), 2923 cm–1 (C-H vibrational stretch), 1586 cm–1  
(asymmetric stretching of –COO-), 1416 cm–1 (symmet- 
ric stretching of –COO-), 1019 cm–1 (C-O-C vibrational 
stretch in cyclic glucose units), 889 cm–1 (β-glycosidic 
bond), and 795 cm–1 (glucopyranose units) [3, 25].
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Exopolysaccharide-based composite hydrogel pro- 
file. Exopolysaccharide-based composite hydrogels had  
crystallinity of 48.95% (Fig. 2a). The XRD diffracto- 
gram (Fig. 2b) showed peaks close to 15 and 22°, which 
corresponded to the gelatinized starch chains [26]. On 
the other hand, a peak around 34° corresponded to 
the crystalline structure of pectin [27]. However, the 
broad peak at 20°, which corresponded to the exopo- 
lysaccharides, disappeared, probably because the exopo- 
lysaccharide structure was destroyed. 

Figure 2c presents the TG thermogravimetric curve 
of compound hydrogels with mass losses assigned to the 
stages of dehydration, degradation, and carbonization. 
According to Dash et al., the second stage consists of  

two continuous processes that follow pectin (200–
280°C) and starch (290–425°C) degradation [28]. Table 2  
shows the percentage of mass loss in each thermal event 
with their respective temperature intervals.

The FTIR spectrum of the hydrogels (Fig. 2d) shows 
additional signals to the spectrum of the exopolysac- 
charide (Fig. 1d). These signals corresponded to the  
C=O carbonyl group (1632 cm–1) for pectin, while the  
peaks at 1429 and 1098 cm–1 could be attributed to  
C-O-O stretching and C-O-H bending modes in starch, 
respectively, and the signal at 719 cm–1 could be corre- 
lated with vibrations belonging of the polysaccharide 
ring [29–31].

The specific surface area of the composite hydro- 
gel, as obtained from the BET isotherm model, was 
0.5616 m2/g. Figure 3 shows the N2 adsorption-desorp- 
tion process of the hydrogel before methylene blue sca- 
venging. This process was a type VI isotherm, which is 
typical of solids with a uniform non-porous surface and 
represents a multilayer adsorption [31].

After the removal process, the composite hydro- 
gels turned blue (Fig. 4a). Figure 4b shows a decrease 
in the band at 1632 cm–1. However, the increase in pH  
to basic levels intensified the bands: at pH 11, the remo- 
val process probably occurred by electrostatic attrac- 
tion [32, 33].

The SEM images of the hydrogels revealed the su- 
perficial changes in these materials during the me- 
thylene blue scavenging at different pH values. At pH 5  
(Fig. 5b), the surface of the hydrogel became smoother 
and more homogeneous, compared to the hydrogel 

Table 1 Mass loss values: thermogravimetric analysis  
of exopolysaccharide obtained from Nostoc commune

Weight, mg Thermal event ΔT, °C Mass loss, %
4.965 Dehydration 20.0–186.0 14.1

Depolymerization 186.0–413.0 49.9
Degradation 413.0–558.0 28.8
Carbonization 558.0–600.0 2.8
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Table 2 Mass loss values: thermogravimetric analysis  
of exopolysaccharide-based composite hydrogels

Weight, mg Thermal event ΔT, °C Mass loss, %
5.297 Dehydration 30.0–150.0 1.5

Degradation 150.0–440.5 88.9
Carbonization 440.5–600.0 3.3
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before scavenging (Fig. 5a). At pH 8 (Fig. 5c), the hydro- 
gel improved its surface homogeneity but changed shape. 
The same pattern occurred at pH 11 (Fig. 5d).

Methylene blue percentage removal. Figure 6 shows  
an increase in methylene blue scavenging at a basic 
pH value (pH 11) for 120 min. The increase could be 
explained by the more negative charge on the adsorbent 
surface, which generated a greater electrostatic attrac- 
tion with the positively charged adsorbate [34]. Table 3 
summarizes the methylene blue removal percentages at 
different pH levels and processing times.

Kinetic adsorption models. The pseudo-first-order, 
pseudo-second-order, and Elovich kinetic models were 
used to verify the experimental data (Fig. 7). Table 4 
shows the values of the constants for the different kinetic 
models.

The pseudo-second-order model showed a higher R2  
value in the scavenging processes at pH 8 and pH 11. On  
the other hand, the Elovich model demonstrated a hig- 
her value at pH 5. Apparently, the mechanism of me- 
thylene blue sorption at pH 8 and pH 11 was caused by 
chemisorption. At pH 5, the surface of the hydrogel was 
heterogeneous, which was in line with Fig. 5b [35].

Adsorption isotherm models. We employed the 
Langmuir, Freundlich, and Temkin isotherms to verify 
the experimental data (Fig. 8). Table 5 shows the values 
that correspond to the adsorption isotherm models.

Negative RL values were obtained from methylene 
blue removal at different pH values. At the three 

Figure 3 BET sorption-desorption isotherms for the 
exopolysaccharide-based composite hydrogel
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pH levels, the methylene blue removal did not fit the 
Langmuir isotherm [36, 37]. However, the adsorption 
intensity (1/n) in all the treatments was below one, 
which suggested that the active centers had less and  
less free enthalpy [38]. The bT values were negative, so 

the adsorption process in all the treatments were en- 
dothermic [39]. The results indicated a good fit (R2) 
with the Temkin model; therefore, this model explained 
the adsorption process between the adsorbate and the 
adsorbent.

Table 3 Methylene blue percentage removal and adsorption capacity

Time, min pH Initial methylene blue concentration, mg/L Adsorption capacity, mg/g Methylene blue removal, %
15 5 1.045×10–6 4.669×10–7 8.00

8 1.014×10–6 4.070×10–7 16.57
11 1.019×10–6 3.623×10–7 25.66

30 5 1.151×10–6 4.817×10–7 13.44
8 1.117×10–6 4.520×10–7 17.59
11 1.146×10–6 4.067×10–7 29.02

60 5 1.275×10–6 5.054×10–7 16.50
8 1.209×10–6 4.698×10–7 20.34
11 1.226×10–6 4.231×10–7 32.11

90 5 1.394×10–6 5.587×10–7 19.83
8 1.286×10–6 5.131×10–7 21.48
11 1.358×10–6 4.936×10–7 32.38

120 5 1.459×10–6 6.054×10–7 22.28
8 1.429×10–6 5.917×10–7 22.28
11 1.469×10–6 5.503×10–7 33.18

a

b

c

Figure 7 Linear plots for methylene blue adsorption: pseudo-first-order model (a); pseudo-second-order model (b); and Elovich 
kinetic model (c)
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Table 4 Parameter values of methylene blue removal: kinetic studies

pH value Kinetic model R2 K1 K2 α, mg/g/min β, g/mg
pH 5 Pseudo-first-order 0.9331 –1.633×10-5 / / /

Pseudo-second-order 0.9257  / 3.120×105 / /
Elovich 0.9857  / / 2.180×107 1.059×10–8

pH 8 Pseudo-first-order 0.9324 –8.017×10–6 / / /
Pseudo-second-order 0.9942 / 1.516×106 / /
Elovich 0.9708 / / 5.715×107 3.147×10–7

pH 11 Pseudo-first-order 0.7549 –1.317×10–5 / / /
Pseudo-second-order 0.9980 / 1.724×106 / /
Elovich 0.9464 / / 4.824×107 1.911×10–6

Table 5 Parameter values of methylene blue removal: adsorption studies

Type of isotherm Parameters Methylene blue removal
pH 5 pH 8 pH 11

Langmuir KL, L/mg –9.89×105 –1.273×106 –1.753×106

qmax, mg/g 1.30×10–8 2.234×10–8 4.898×10–8

RL –2.65 –1.86 –0.99
R2 0.8495 0.9912 0.9893

Freundlich KF, mg/g 2.09×10–43 8.30×10–33 3.51×10–22

1/n –6.02 –4.18 –2.41
R2 0.9587 0.9978 0.9973

Temkin Km, L/g 7.08×105 8.07×105 8.15×105

bT, J/mol –5.901×10–7 –4.871×10–7 –4.04×10–7

R2 0.9991 0.9999 0.9997

Figure 8 Linear plots for methylene blue adsorption: Langmuir model (a); Freundlich model (b); and Temkin model (c)
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CONCLUSION
Exopolysaccharides from Nostoc commune V. yiel- 

ded composite hydrogels that could act as methyle- 
ne blue scavengers. These materials had a non-porous 
and heterogeneous surface, which underwent chan- 
ges at basic pH values during the removal process.  
The methylene blue adsorption mechanism depen- 
ded on chemisorption and endothermic processes. 
The maximal removal was 33.18%, which proved 
that these composite hydrogels were not efficient as 
methylene blue scavengers. The result open pros- 

pects for further research of exopolysaccharides  
with other  adsorption materials.
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