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Abstract:
Wet chemistry methods are traditionally used to evaluate the quality of a coffee beverage and its chemical characteristics. These 
old methods need to be replaced with more rapid, objective, and simple analytical methods for routine analysis. Near-infrared 
spectroscopy is an increasingly popular technique for nondestructive quality evaluation called a green technology.
Our study aimed to apply near-infrared spectroscopy to evaluate the quality of coffee samples of different origin (Brazil, 
Guatemala, Peru, and Congo). Particularly, we analyzed the roasting time and its effect on the quality of coffee. The colorimetric 
method determined a relation between the coffee color and the time of roasting. Partial least squares regression analysis assessed 
a possibility of predicting the roasting conditions from the near-infrared spectra.
The regression results confirmed the possibility of applying near-infrared spectra to estimate the roasting conditions. The 
correlation between the spectra and the roasting time had R2 values of 0.96 and 0.95 for calibration and validation, respectively. 
The root mean square errors of prediction were low – 0.92 and 1.05 for calibration and validation, respectively. We also found 
a linear relation between the spectra and the roasting power. The quality of the models differed depending on the coffee origin 
and sub-region. All the coffee samples showed a good correlation between the spectra and the brightness (L* parameter), with R2 
values of 0.96 and 0.95 for the calibration and validation curves, respectively.
According to the results, near-infrared spectroscopy can be used together with the chemometric analysis as a green technology to 
assess the quality of coffee.
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INTRODUCTION
Near-infrared spectroscopy (NIRS) is an incre- 

asingly popular technique used for non-destructive 
quality evaluation in a variety of industries, including 
the food, agricultural, pharmaceutical, and wood 
industries [1–3]. It ensures rapid and easy measurements 
without the need for multiple chemical reagents. Recent 
NIRS methods include online measurement, portable 
measurement, and imaging analysis [4–6]. NIRS is 
continuously expanding its uses in food analysis and 
becoming an important tool for food quality control.

The quality of coffee as a beverage is determined 
by multiple factors such as the production system, 
geographical origin, chemical composition of roasted 
beans, and final beverage characteristics. Raw coffee 
beans contain a wide range of chemical compo- 
unds which interact amongst themselves at all stages 
of coffee roasting, resulting in greatly diverse final  

products [7–9]. For instance, the caffeine content, which 
has a significant effect on the final quality of coffee 
products, needs to be determined fast and reliably by 
analytical techniques.

Wet chemistry methods are traditionally used to 
evaluate coffee quality and chemical characteristics, 
but these methods are destructive and time-consuming. 
Therefore, it is in scientific interests to find rapid, more 
objective, and simpler analytical methods for routine 
coffee analysis to replace the old methods. 

Recent research has shown that spectroscopy in near-
infrared (NIR) and mid-infrared (MIR) radiation is 
useful in coffee analysis [10–20]. Infrared spectroscopy 
(especially NIRS) coupled with chemometrics has 
been proposed as an analytical method to determine 
the degree of coffee roasting, adulterants in ground 
coffee, and sensory attributes [17, 18, 21]. It is also used 
to distinguish between robusta and arabica varieties, 
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discriminate coffee based on origin, and predict its 
chemical composition [15, 20, 22–24].

The growing global demand for specialty coffee 
increases the need for improved coffee quality 
assessment. For this reason, Tolessa et al. proposed NIR 
spectroscopy to predict specialty coffee quality [13]. 
They examined the NIR spectra of 86 green Arabica 
bean samples of various quality. To create a model 
that correlates spectral data to cupping score data, 
they applied the partial least squares (PLS) regression 
method. The high correlation coefficient between the 
measured and predicted cupping scores (R2-values of 
90, 90,78, 72 and 72) indicate that NIR spectroscopy 
coupled with chemometric analysis could be a promising 
tool for fast and accurate prediction of coffee quality and 
for classifying green coffee beans into different specialty 
grades. 

The sensory analysis of espresso coffee with 
the attenuated total reflectance-Fourier transform 
infrared spectroscopy (ATR-FTIR) was proposed by  
Belchior et al. [10]. The authors evaluated the potential 
of ATR-FTIR and chemometrics in discriminating 
espresso coffees with different sensory characteristics 
reported by a panel of coffee tasters. They performed 
partial least-squares discriminant analysis (PLS-DA)  
based on spectroscopic data to classify the coffee 
samples according to their sensory qualities, 
demonstrating the potential of FTIR and chemometric 
analysis in assessing coffee quality. 

In another study, Magalhaes et al. proposed FT-NIR 
spectroscopy and PLS regression as a non-destructive 
and rapid tool to assess the content of three main 
phenolics (caffeic acid, (+)-catechin, and chlorogenic 
acid) and methylxanthines (caffeine, theobromine, and 
theophylline) in spent coffee grounds [11]. The best PLS 
model was obtained for caffeine content (0.95) followed 
by caffeic acid (0.92), (+)-catechin (0.88), theophylline 
(0.84), and chlorogenic acid (0.71), indicating FT-NIR 
spectroscopy as a suitable technique to screen spent 
coffee grounds. 

Mees et al. identified coffee leaves using FT-NIR 
spectroscopy and soft independent modelling by class 
analogy (SIMCA) [12]. In particular, they investigated 
nine taxa of Coffea leaves harvested over nine years 
in a tropical greenhouse of the Meise Botanic Garden 
(Belgium). The FT-NIR coupled with SIMCA allowed 
the authors to discriminate the spectral profile by 
taxon, aging stage, and harvest period with a correct 
classification rate of 90, 100, and 90%, respectively. 

NIRS, PLS, and variable selection were used by 
Ribeiro et al. to predict concentrations of a wide range 
of compounds in raw coffee beans [15]. The authors 
proposed NIR spectroscopy coupled with chemometrics 
as a low-cost, rapid, and eco-friendly method in both 
off-line and on-line analyses of coffee beans and coffee 
beverages. The obtained values of root mean square 
error of prediction (RMSEP) (0.08, 0.07 and 0.27) and 
rcv (0.98, 0.96, and 0.96) showed linear relations of 

PLS models for quantifying caffeine, trigonelline, and 
5-caffeoylquinic acid, respectively. 

Near-infrared spectroscopy was used by Macedo et al.  
to evaluate the chemical properties of intact green coffee 
beans based on PLS regression models [25]. The highest 
determination coefficients obtained for the samples 
in the validation set were 0.810, 0.516, 0.694, and 0.781 
for moisture, soluble solids, total sugar, and reducing 
sugars, respectively. These results indicate that the 
NIR technology can be applied routinely to predict the 
chemical properties of green coffee. 

In another study, Baqueta et al. investigated the 
use of NIR spectroscopy in conjunction with the PLS 
approach to identify the sensory properties of coffee [21]. 
The coffee samples varied in species, production region, 
variety, drying conditions, transit, postharvest procedure, 
storage times, coffee blend, coffee composition, and 
roasting process. The performance of PLS models was 
verified with the following merit parameters: sensitivity, 
accuracy, linearity, residual prediction deviation, fit, 
quantification, and detection limits. Since all the 
sensory qualities were predicted with acceptable values 
compatible with the merit criteria, the created models 
were suitable for quantifying, detecting, differentiating, 
and predicting the sensory features of coffee samples.

Kyaw et al. reported encouraging findings about 
utilizing NIR spectroscopy to forecast the moisture 
content of ground unroasted coffee beans [26]. The 
spectral data processed with second derivative and 
Kubelka-Munk (K/S) data yielded good accuracy for 
moisture prediction (r = 0.87 and accuracy = 99%). 

In view of the above, we aimed to develop a simple, 
rapid, and accurate method for evaluating the quality 
of coffee samples by NIR spectroscopy, especially to 
investigate changes in the coffee spectra during roasting.  

STUDY OBJECTS AND METHODS 
Samples. Our study objects were arabica coffee 

samples roasted by the Cafe Creator in Poznań, Poland. 
The coffee samples were divided into four groups based 
on their origin, namely Brazil, Guatemala, Peru, and  
Congo. Their roasting parameters included the roaster 
power and roasting time (Table 1).

Color measurements. The color of 41 samples 
of coffee beans was measured by the L* a* b* method 
using a Konica Minolta Chroma Meter CR-310 
trichromatic colorimeter. Each sample was measured 
10 times. Before the measurements, the device was 
calibrated against a white standard with the following 
parameters: Y = 93.00, x = 0.3170, y = 0.3330. The entire 
analysis was carried out using a D65 light source, i.e. the 
daylight phase and the CIE L* a* b* color system.

Near-infrared (NIR) measurements. NIR spectra 
were performed on a MPA/FT-NIR spectrometer 
(Bruker). Single beam spectra of the coffee samples 
were collected and rationed against the background of 
air. For each sample, the NIR spectra were recorded 
from 12500 to 400 cm–1 by co-adding 16 interferograms 
at a resolution of 4 cm–1. Each sample was measured five 
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times. The coffee was ground in an electric grinder for 
measurements. Between the measurements, the samples 
were mixed in order to obtain reliable results. The 
measurements were registered in the OPUS software 
(Bruker, USA).

Partial Least Squares (PLS) regression. The PLS 
regression method was used to determine relations 
between the spectra and the roasting time. Independent 
variables (X) were the NIR spectra and dependent 
variables (Y) were the color parameter or the roasting 
time. Full cross-validation was applied to the regression 
model. The regression models were evaluated using the 
adjusted R2 and the root mean-square error of cross-
validation. The quality models were evaluated by the 
ratio of the standard deviation of reference data to the 
root mean-square error of prediction, or the ratio of 
performance to deviation. The PLS analysis was carried 
out using the Unscrambler X software (CAMO, Oslo, 
Norway).

RESULTS AND DISCUSSION 
Color measurements. Table 2 shows the color 

measurements of coffee beans in the L*, a*, b* system. 
The L* parameter is responsible for the brightness 

of color in the tristimulus model. The higher it is, the 
greater the brightness of the tested sample. Among the 
coffees under study, the green coffee beans from Peru 
had the highest L* value, i.e., the highest brightness. 
The Congo coffee, which was roasted at the power of 
80% for 12 min, had the lowest L* parameter, i.e., the 
lowest brightness. All the samples had positive a* and 
b* values, with their shades varying between red and 
yellow. 

As we can see in Table 2, the green coffee beans 
showed the greatest brightness, followed by the samples 
roasted for 8 min. With the increasing degree of roasting, 
the color of coffee beans became darker, which is 
consistent with literature [27, 28].

Spectral characteristics of coffee samples. Figure 1  
shows the absorption spectra of the coffees from Brazil, 
Congo, Guatemala, and Peru roasted for 12 min (80% 
roasting power). The spectral range was recorded 
throughout the region of 12 500–4000 cm–1. The most 
intense absorption bands were recorded in the range 
of 8230–4440 cm–1. The spectra were characterized by 
seven bands with maximum absorption at 8238, 6819, 
5800, 5700, 5100, 4700, and 4440 cm–1. These bands 
corresponded to the C-H, N-H, and O-H vibrations [29]. 
The spectral range of 4545–4000 cm–1 corresponded to 
the C-H stretching vibrations. The bands in the region 
of 5000–4545 cm–1 were assigned to the combination 
of the N-H and O-H stretching vibrations. The range 
of 6060–5555 cm–1 corresponded to the first tone of the 
C-H stretching vibration. In the 7142–6666 cm–1 region, 
it was associated with the first shade of the N-H and 
O-H stretching vibrations, while the absorption band 
in the 7692–7142 cm–1 range was derived from the C-H 
stretching vibrations. The band in the region of 9090–
8163 cm–1 originated from the second tone of the C-H 
stretching vibrations [30]. Specific chemical compounds 
can be described with the following wavenumbers: 
caffeine (8865, 7704, 5981, 5794, and 5171 cm–1), 
trigonelline (8865 cm–1), chlorogenic acid (6770, 5794, 
5171, and 4699 cm–1), lipids (6770, 5794, 5171, and 4699 
cm–1), hydrocarbons (6770, 5171, and 4699 cm–1), sucrose 
(5794, 5405, and 5171 cm–1), proteins and amino acids 
(5171 cm–1), and water (5171 cm–1) [9, 14, 31]. Table 3  
presents the origin of the bonds occurring at the given 
wavenumbers for the tested coffee beans.

Coffee roasting. Many physical and chemical 
changes take place during coffee roasting. The method 
of roasting depends on the origin of coffee beans and 
consumer preferences. Heavily roasted coffee has a 
lower nutritional value than light coffee [32].

Numerous efforts have already been made to 
use NIR spectroscopy as an alternative technique to 
determine coffee quality during roasting and analyze its 
chemical composition. According to Ribeiro et al., NIR 
spectroscopy can be used to determine the relationship 

Table 1 Roasting parameters of coffee samples 

Origin Power of the roaster, % Roasting time, min
Brazil Green –

75 8, 10, 12, 13
80 8, 10, 12
95 8, 10, 12

Guatemala Green –
75 8, 10, 12, 15
80 8, 10, 12, 14
95 8, 10, 12, 13

Peru Green –
75 8, 10, 12, 14
80 8, 10, 12, 14
95 8, 10, 12, 14

Congo Green –
80 8, 10, 12

Figure 1 Absorption spectra of ground coffee in near-infrared 
region (12500–4000 cm–1)
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Table 2 Color measurements of green and roasted coffee beans

Origin Power of the roaster, % Roasting time, min L* average  b* average  a* average  
Guatemala (green beans) – – 51.670 ± 0.200 0.870 ± 0.120 11.700 ± 0.141
Guatemala (roasted beans) 95 8 45.440 ± 0.163 5.980 ± 0.057 12.650 ± 0.013

10 42.410 ± 0.233 5.240 ± 0.064 9.810 ± 0.177
12 38.050 ± 0.099 3.550 ± 0.099 6.250 ± 0.085
13 36.390 ± 0.318 3.210 ± 0.042 4.760 ± 0.086

80 8 45.480 ± 0.255 6.060 ± 0.156 12.290 ± 0.383
10 42.460 ± 0.283 5.300 ± 0.106 9.980 ± 0.163
12 39.720 ± 0.191 4.150 ± 0.077 7.380 ± 0.205
14 36.770 ± 0.282 3.230 ± 0.071 4.550 ± 0.085

75 8 48.120 ± 0.184 6.280 ± 0.163 14.470 ± 0.134
10 43.210 ± 0.269 5.600 ± 0.106 10.490 ± 0.185
12 40.620 ± 0.184 4.570 ± 0.099 7.860 ± 0.120
15 36.460 ± 0.141 3.300 ± 0.064 4.160 ± 0.141

Peru (green beans) – – 53.440 ± 0.042 0.880 ± 0.049 12.840 ± 0.078
Peru (roasted beans) 95 8 42.540 ± 0.120 5.560 ± 0.085 10.430 ± 0.148

10 38.940 ± 0.099 4.330 ± 0.064 7.280 ± 0.057
12 38.060 ± 0.410 3.710 ± 0.121 6.440 ± 0.234
14 36.860 ± 0.155 3.390 ± 0.064 5.270 ± 0.049

80 8 45.010 ± 0.057 6.360 ± 0.064 12.620 ± 0.042
10 42.240 ± 0.078 5.510 ± 0.092 10.420 ± 0.127
12 39.910 ± 0.156 4.160 ± 0.020 7.510 ± 0.106
14 37.350 ± 0.120 3.200 ± 0.049 5.360 ± 0.099

75 8 45.350 ± 0.092 6.440 ± 0.057 12.930 ± 0.106
10 40.240 ± 0.157 4.850 ± 0.085 8.290 ± 0.142
12 39.270 ± 0.099 4.120 ± 0.049 7.130 ± 0.071
14 37.610 ± 0.134 3.530 ± 0.021 5.440 ± 0.071

Congo (green beans) – – 51.440 ± 0.134 0.610 ± 0.085 11.050 ± 0.071
Congo (roasted beans) 80 8 42.150 ± 0.141 4.620 ± 0.041 9.270 ± 0.078

10 39.240 ± 0.141 3.810 ± 0.078 6.680 ± 0.078
12 36.120 ± 0.156 2.670 ± 0.085 3.950 ± 0.041

Brazil (green beans) – – 52.360 ± 0.205 1.140 ± 0.057 13.080 ± 0.058

Brazil (roasted beans)

95
8 46.240 ± 0.092 6.810 ± 0.064 13.910 ± 0.099
10 41.650 ± 0.128 5.360 ± 0.640 9.310 ± 0.064
12 36.980 ± 0.085 3.460 ± 0.085 4.780 ± 0.064

80
8 45.600 ± 0.071 6.040 ± 0.084 13.110 ± 0.099
10 42.290 ± 0.134 5.800 ± 0.099 10.290 ± 0.065
12 37.930 ± 0.092 3.910 ± 0.071 5.860 ± 0.042

75

8 43.570 ± 0.184 6.190 ± 0.057 11.300 ± 0.064
10 39.340 ± 0.128 4.600 ± 0.057 7.340 ± 0.014
12 37.440 ± 0.170 3.710 ± 0.058 5.160 ± 0.085
13 36.690 ± 0.134 3.080 ± 0.057 4.210 ± 0.071

between the quality of a coffee cup and the chemical 
composition of roasted coffee beans [9]. In addition, the 
authors created a model from roasted beans to predict 
the quality attributes of a coffee cup (e.g. acidity, body, 
and flavor).

The relationship between some coffee roasting 
variables (weight loss, density, and moisture) and 
near-infrared spectra of original green and diffe- 
rently roasted coffee samples was investigated by  
Alessandrini et al. [14]. They developed separate 
calibration and validation models based on partial 
least square (PLS) regression, correlating NIR spectral 
data of 168 representatives and suitable green and  
roasted coffee samples with each roasting variable.  

As a result, the authors constructed robust and reliable 
models to predict roasting variables for unknown 
roasted coffee samples, considering that measured vs. 
predicted values showed high correlation coefficients 
(0.92–0.98).

Pires et al. used multivariate calibration and NIR 
spectroscopy to correctly predict roasting degrees 
in ground coffee and coffee beans as a substitute for 
the Agtron method [18]. The mathematical models 
for predicting Agtron values of new coffee samples 
using the PLS approach were based on the association 
between NIR spectra data and Agtron reference results. 
All Agtron roasting characteristics were investigated 
in order to create representative models. With RMSEP 



299

Wójcicki K. Foods and Raw Materials. 2022;10(2):295–303

Table 3 The origin of bonds occurring at given wavenumbers 
for tested coffee beans [31]

Bond type Wavenumber,  
cm–1

CH3; second overtone; stretching symmetric 8545–8042
CH 7020–6562
CH3; first overtone; stretching asymmetric 5841–5751

CH2; first overtone; stretching asymmetric 5725–5654

OH; stretching 5234–5000
CH; stretching 4954–4509
CH3; stretching 4358–4302

values of 4.48 and 3.67, respectively, the proposed 
models showed promising results in predicting roasting 
characteristics in roasted whole coffee beans and ground 
coffees.

Yergenson and Aston investigated the use of in situ 
NIR spectroscopy in the prediction of cracking events 
(start and end) during coffee roasting in order to develop 
a more robust method of roasting based on cracks [33]. 
Two sets of popping sounds (first and second cracks) that 
occur during coffee roasting are essential indicators for 
establishing the roasting endpoint. The coffee samples 
were roasted using various time-temperature profiles. 
In situ NIR spectroscopy proved to be a reliable tool in 
forecasting the start and finish times of first and second 
crack occurrences based on the PLS regression (PLSR) 
with audio recordings from coffee roasting.

The NIR spectra of coffees (beans and ground) 
roasted under different conditions are shown in Fig. 2.  
The obtained spectra were similar to each other, 
although varying in intensity. Longer roasting time 
lowered the intensity of the bands in all the ranges. 
This was due to decreased values of coffee components, 
as well as their volume and weight [34–36]. We found 
that the samples with the shortest roasting time  
(8 min) showed the highest absorbance, while those with 
the longest roasting time (12 min) showed the lowest 
absorbance at the same wavelength. We also noticed 
that the intensity of the spectrum bands decreased 
with increasing roasting time. The NIR spectra 
obtained during the roasting assays were similar to the 
spectra reported in other studies [37, 38]. According 
to the authors, the main changes in the spectra of the 
roasting process were an absorbance decrease in the 
water band region (5200–5000 cm−1), which was due 
to moisture loss, and an absorbance increase in the 
combination band region (5000–4000 cm−1). A more 
detailed discussion of the main wavelength intervals 
and their relationships to chemical and physical changes 
in coffee during roasting can be found in the work by  
Santos et al. [37]. Our results were also consistent with  
those reported by Catelani et al. [38]. The roasting 
process degraded coffee compounds, namely 
chlorogenic acid, coffee sugar, fat, and water. Literature 

data shows that the roasting time also affects the 
caffeine content in coffee [39]. The longer the coffee 
is roasted, the lower its caffeine content. All the 
samples showed a lower intensity with an increase in 
the roasting time. We concluded that regardless of the 
origin, the roasting time caused a decrease in the coffee 
components. The most intense bands occurred in the 
coffees roasted for the shortest time, which means that 
they lost the least of their components and nutritional 
value. 

The partial least squares (PLS) analysis was 
performed to determine the time of roasting. The 
PLS models were obtained for the entire spectral 
range (12500–4000 cm–1) and sub-regions without 
mathematical transformations (Table 4). 

We found good correlations between the spectra 
and the roasting time for all the coffee samples. The 
R2 values for the calibration and validation curves 
were 0.94 and 0.78, respectively. The root mean-square 
errors (RMSE) were low – 0.39 and 0.76 for calibration 
and validation, respectively. The obtained models were 
improved when analyzing each type of coffee samples 
separately. Also, the sub-regions were used to improve 
the model quality. 

There was a weak correlation between the spectra 
and the roasting power for all the coffee samples. For 
this reason, we analyzed the samples separately. The 
most accurate model for Guatemala coffee was obtained 
in the spectral region of 6813–5332 cm–1. The R2 was 
0.97 for calibration and 0.64 for validation. For Peru 
coffee, the spectral range of 5374–4954 cm–1 gave the 
best quality model, with R2 values of 0.97 and 0.84 for 
calibration and validation, respectively. There was no 
correlation between the spectra and the roasting power 
for Brazil coffee. The coffee from Congo was not 
analyzed (only one power condition – 80%). 

The degree of coffee roasting can be assessed by the 
color: the longer the roasting, the darker the beans. We 
studied a possibility of estimating the roasting time on 
the basis of the NIR spectra by using the PLS analysis 
to correlate the NIR spectra (coffee beans) with the 
L* parameter (Table 4). By analyzing the values of the 
calibration (R2 = 0.96) and validation (R2 = 0.95) curves, 
as well as the RMSE values (0.92 for calibration and 
1.05 for validation), we assumed that the coffee roasting 
time could be determined based on the PLS regression 
analysis and the brightness parameter (L*).

Our study indicates the potentiality of NIR 
spectroscopy in evaluating coffee quality. Based on the 
changes of spectra, it is possible to monitor changes 
during roasting. Chemometric analysis also delivered 
very promising results. The PLS models (for roasting 
time and power conditions) hold potential as a rapid 
and reliable method which could be helpful in coffee 
manufacturing. Our next step will be to determine the 
chemical composition of the coffee samples and identify 
the potential of NIR spectroscopy in correlating roasting 
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conditions (time and power) with the chemical changes 
in order to select optimal roasting conditions for the final 
product.

CONCLUSION 
Our study aimed to apply near-infrared spectroscopy 

to evaluate the quality of the coffee samples from Brazil, 
Guatemala, Peru, and Congo. We investigated their 
composition based on the spectral bands and vibrations. 

The regression results confirmed the possibility 
of applying the NIR spectra to predict the roasting 
conditions. There was a correlation between the spectra 

and the roasting time, with the R2 of 0.94 and 0.78 for 
calibration and validation, respectively. The RMSEs 
were low – 0.39 and 0.76 for calibration and validation, 
respectively. We also obtained a linear relation between 
the spectra and the roasting power. The quality of the 
models differed based on the coffee’s origin and sub-
region. All the coffee samples showed a good correlation 
between the spectra and the brightness (L* parameter). 
The R2 values were 0.96 and 0.95 for the calibration and 
validation curves, respectively. 

The results proved that NIR spectroscopy coupled 
with chemometrics could be a promising tool to predict 

Figure 2 Changes in near-infrared spectra in coffee roasted at different power and time: (a) Guatemala coffee, (b) Peru coffee,  
(c) Brazil coffee, (d) Congo coffee. Full range spectrum (12500–4000 cm–1)
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Table 4 Partial least squares (PLS) regression analysis

PLS model Samples Spectral region, cm–1 Root mean-square error R2

Calibration Validation Calibration Validation
Roasting time All coffee samples 12500–4000 0.39 0.76 0.94 0.78

Guatemala 12500–4000
6813–5332

0.09
0.24

0.79
0.48

0.99
0.98

0.83
0.94

Peru 12500–4000
6030–4000

0.39
0.18

0.70
0.82

0.94
0.99

0.85
0.80

Brazil 12500–4000 0.22 0.30 0.96 0.95
Congo – – – – –

Roasting power All coffee samples – – – – –
Guatemala 12500–4000

6314–5295
1.15
1.44

6.23
5.72

0.98
0.97

0.57
0.64

Peru 12500–4000
6314–5295
6227–4000
5374–4954
4416–4090

1.70
1.26
0.84
1.51
2.29

6.16
4.32
4.54
3.84
4.27

0.96
0.98
0.99
0.97
0.93

0.58
0.79
0.77
0.84
0.80

Brazil – – – – –
Congo – – – – –

Color (L* parameter) All coffee samples 12500–4000 0.92 1.05 0.96 0.95

the roasting conditions of coffee samples. However, the 
models developed in this study need to be further tested 
on independent data sets from other coffee varieties 
to assess their stability and accuracy. Because of its 
characteristics, NIR spectroscopy has been applied in 
different production stages in the coffee industry: from 
green coffee beans to the end product. The growing 
interest in NIR spectroscopy is primarily due to the 
technique’s numerous advantages over other analytical 
techniques. In addition, this technique is nondestructive 
and noninvasive, with a minimal or non-sample 

preparation. NIR spectroscopy is also fast, low-cost, 
and robust, so it can be used in different environments 
such as laboratories and industrial plants. In the future, 
the availability of portable instruments will also allow 
its use in the field. For these reasons, NIR spectroscopy 
could be named a “green technology”.
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