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Abstract: 
Fermentation improves the nutritional and sensory properties of food. Despite the challenges of fermenting algae individually, 
incorporating it into vegetable matrices offers a great opportunity for the development of new products.
This study aimed to investigate changes in the antioxidant capacity and total phenolic content of Chinese, white, and red 
cabbages supplemented with Undaria pinnatifida throughout controlled fermentation. These values were then compared to those 
for the respective spontaneous process (mixed models), as well as to previously published data on cabbage fermentation without 
algae (simple models). Controlled fermentation was carried out in a two-step process using previously selected autochthonous 
starter cultures. Antioxidant activity was measured using the DPPH scavenging assay and the CUPRAC assay. The total phenolic 
content was determined using the Folin-Ciocalteu method.
The total phenolic content varied across the different fermentation processes depending on the vegetable matrix. The antioxidant 
capacity was significantly higher in the controlled process than in the spontaneous one in all mixed models. Red cabbage with 
algae exhibited higher total phenolics and antioxidant capacity than white and Chinese cabbages with algae. Furthermore, all the 
mixed models showed higher or comparable total phenolics and antioxidant capacity compared to the respective simple models 
under similar controlled fermentation and extraction conditions, except for Chinese cabbage with Undaria under the CUPRAC 
method.
Controlled fermentation of the studied cabbages improved their antioxidant capacity to a greater extent than spontaneous in all 
mixed models. In general, the mixed models showed higher nutritional properties than the simple models.
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INTRODUCTION
Undaria pinnatifida (Harvey) Suringar (Laminari- 

ales, Phaeophyta) is native to the coast of Japan, China, 
and Korea [1]. This is a highly invasive species that has 
colonized different coastal areas worldwide [2]. In 1992, 
it was introduced to the coast of Golfo Nuevo (Puerto 
Madryn, Argentina) by shipping traffic [3], causing a 
significant impact on the ecosystem [4]. Currently, this 
alga is distributed continuously from Puerto Deseado, 
Province of Santa Cruz, to the west bank of the San 

Matías Gulf, Province of Río Negro [4]. As its invasion 
progresses and abundance increases, its eradication 
becomes a challenge. In this sense, Undaria becomes 
an alternative source for use in industries such as textile, 
food, cosmetics, and pharmaceuticals, among others. 

U. pinnatifida is mainly consumed in Asia as 
wakame (dried seaweed), which is used as a supplement 
in soups and salads [5]. This seaweed is a natural source 
of nutritional compounds such as fatty acids, dietary 
fiber, protein, polysaccharides, minerals, vitamins, and 
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sterols. Furthermore, this alga also contains bioactive 
compounds, such as carotenoids and polyphenols, with 
high antioxidant activity [6]. The nutritive properties of 
U. pinnatifida exert numerous health benefits, making 
the alga a potential source of functional foods [7]. These 
powerful properties may contribute to formulating inno- 
vative natural alternatives that cater to the customers’ 
growing demand for healthier products. 

In response to this trend, seaweed fermentation has  
gained considerable interest due to its potential to pro- 
mote the products’ nutritional and sensory qualities [8].  
Furthermore, this biotechnological approach can enhance  
the products’ safety, health-promoting properties, and  
overall appeal [9]. Uchida et al. [10] used starter cultu- 
res for U. pinnatifida fermentation and, in all the treat- 
ments relying on native microflora, observed spoilage 
due to a slight decrease in the pH values. U. pinnatifida 
contains complex polysaccharides, such as fucoidans, 
laminarins, and alginates, which are challenging to 
hydrolyze by the metabolism of lactic acid bacteria 
(LAB) [11]. However, it could be used in a seaweed-sauer- 
kraut style product with a broader spectrum of bioactive 
molecules [12], generating an alternative for vegans, 
vegetarians, lactose intolerants, and those requiring a 
cholesterol-free diet.

Sauerkraut is mainly consumed in Central and East- 
ern Europe. This traditional food is developed through 
the natural lactic fermentation of shredded white cab- 
bage (Brassica oleracea var. capitata f. alba) preserved 
in salt, with sugars transformed to lactic acid by the 
action of LAB. However, this fermentation process has  
been adapted globally to include different types of cab- 
bage, such as red cabbage (B. oleracea var. capitata 
f. rubra) and Chinese cabbage (B. rapa ssp. pekinensis 
(Lour.) Hanelt). These vegetables differ in their physi- 
cochemical properties due to variations in structure 
and composition. White and red cabbage have a mode- 
rate carbohydrate content between 6 and 7 g/100 g FW 
(fresh weight), primarily as simple sugars, whereas Chi- 
nese cabbage has a lower carbohydrate concentration,  
3 g/100 g FW [13, 14]. Chinese cabbage stands out for 
calcium and iron. In addition, it exhibits diversity in 
the polyphenolic contents, with the outer leaves having 
the highest levels, and related antioxidant activities.  
In contrast, white and red cabbage are rich in Vitamin C,  
potassium, and glucosinolates, with red cabbage con- 
taining additional anthocyanins and polyphenols, en- 
hancing its antioxidant properties [14]. Nevertheless, 
the profile and concentration of phytochemicals are 
influenced by such factors as cultivar, agricultural con- 
ditions, and environment [15], while fermentation can 
variably affect total phenolic compounds and antioxidant 
activity [13].

Sauerkraut is recognized for its numerous health 
benefits, which stem from the fermentation process used 
to produce it [9]. For example, the hydrolysis of poly-
phenols, naturally present in raw cabbage, enhances an- 
tioxidant activity, and organic acid production inhibits 
the development of pathogenic or spoilage bacteria [16]. 

Red cabbage, which is also used to produce sauerkraut, 
has an advantage over white cabbage due to its high con-
centration of anthocyanins [17]. These naturally occur-
ring flavonoid pigment molecules have health-promoting 
properties such as antioxidant, anti-inflammatory, and 
anti-diabetic activities [14, 17]. Chinese cabbage, widely 
used to make kimchi, is also linked to health-promoting 
properties. Its effectiveness has been demonstrated in 
treating obesity and irritable bowel syndrome [18].

While many manufacturers incorporate seaweed in 
sauerkraut, it is used primarily as a seasoning to en-
hance flavor rather than as a fundamental ingredient. 
Unlike cabbage, seaweed does not contain simple carbo- 
hydrates and has a high buffering capacity, which af-
fects the lactic fermentation process [11]. The LAB, 
which play a key role in this fermentation, are Generally 
Recognized as Safe (GRAS) and have a Qualified Pre-
sumption of Safety (QPS) status according to the U.S. 
Food and Drug Administration (FDA) and the European 
Food and Safety Authority (EFSA), respectively [19, 20]. 
The species belonging to Lactiplantibacillus, Lactoba-
cillus, Leuconostoc, Enterococcus, Pediococcus, and 
Weissella genera are often involved in the spontaneous 
fermentation of vegetables [21]. Even though sponta-
neous fermentation is widely used to preserve raw vege- 
tables, it can exhibit alterations during the process. 
These risks include inadequate inhibition of pathogenic 
and spoilage microorganisms, the development of unde-
sirable sensory characteristics, and changes in the nutri-
ent composition [22]. 

An alternative approach is to use selected starter 
cultures for controlled fermentation. Unlike other tradi- 
tional products (cheese, sausages), starter cultures in ve- 
getable matrixes have only been developed in recent 
years [23]. Previous studies widely recommend autoch-
thonous cultures, which adapt quickly to the fermenta- 
tion matrix, guarantee safety, and improve the fermen- 
ted product’s sensory and functional properties [21, 23]. 

In this study, we aimed to assess the development of 
fermentation, total phenolic content, and antioxidant ca-
pacity (DPPH and CUPRAC methods) of three varieties 
of Brassica vegetables (Chinese cabbage, white cabbage, 
red cabbage) supplemented with U. pinnatifida (mixed 
models). The fermentation process was controlled and 
included two steps. In addition, we compared these pa-
rameters with those for the respective spontaneous pro-
cesses (mixed models) and previously published data  
for cabbage fermentation without algae (simple models).

STUDY OBJECTS AND METHODS
Cabbage and Undaria samples. White cabbage 

(Brassica oleracea var. capitata f. alba), red cabbage  
(B. oleracea var. capitata f. rubra), and Chinese cabbage 
(Brassica rapa subsp. pekinensis (Lour.) Hanelt) were 
grown in autumn (March–June 2022) in the Valle Infe- 
rior del Río Chubut, Patagonia, Argentina (−43.31 la- 
titude, −65.53 longitude). The cabbages were bought 
from a local farm and stored for less than three days 
at 4°C before fermentation. U. pinnatifida algae were 
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provided by the National Technological University, 
Puerto Madryn-Chubut, Argentina. The seaweeds were 
harvested in winter (July–August 2022) in the coastal 
areas of Golfo Nuevo at a depth of 3–15 m. After that, 
the samples were placed in sterile bags and stored  
at –20°C until used. Only the blade structure was used 
for the experiments.

Bacterial strains. Leuconostoc mesenteroides ssp. 
jonggajibkimchii RCTw1.1, Ln. mesenteroides ssp. dex-
tranicum RBTw100, Lactiplantibacillus plantarum ssp. 
argentoratensis RBTw102, L. plantarum AKTw180, and 
L. pentosus AKTw332 were obtained from the Bacterial 
Biotechnology Laboratory (BBL, Trelew-Chubut, Argen- 
tina). The strains were previously isolated from the three 
spontaneously fermented cabbages and selected based 
on their technological properties [24]. They were propa- 
gated in MRS broth and incubated overnight at 30°C. 
After centrifugation (4,000×g, 10 min), the microbial cells  
were washed twice in a sterile saline solution (0.9% 
NaCl) before their inoculation.

Fermentation trial. A controlled fermentation trial 
was carried out with Chinese, white, and red cabbage 
supplemented with 20% (w/w) of shredded U. pinnati- 
fida blades and 3% (w/w) of common salt. The cabbage 
heads were processed according to the methodology pro-
posed by Parada et al. [24]. The algae blades were previ-
ously sanitized for 5 min (NaClO, 100 ppm) and washed. 
After removing the algae midrib, the blades were shred-
ded for 2 min using a processor (Atma LM852, 400 Watt).  
Each salted cabbage jar (2 L) supplemented with the al-
gae was heated at 100°C for 5 min and cooled at room 
temperature. The inoculation process was completed 
in two stages as described by Parada et al. [24]. At the 
same time, the spontaneous fermentation of Chinese, 
white, and red cabbage was carried out under the same 
conditions mentioned by Parada et al. [24]. The assays 
were performed in triplicate.

Fermentation parameters. The LAB count and pH 
were determined according to Parada et al. [24]. These 
parameters were monitored on days 0, 1, 3, 5, 10, 15, 20, 
25, and 30 of the fermentation process. The results of the 
LAB count were expressed as CFU/g sample. All the tri-
als were performed in triplicate.

Antioxidant analysis. Sample preparation. The 
samples collected on days 0, 1, 3, 5, 10, 15, 20, 25, and 
30 were processed following the recommendation of 
Parada et al. [24]. They were dried at 37°C until con-
stant weight and ground. Water extracts (1:10 w/v di-
lution) were obtained using an autoclave at 120°C for  
15 min. After centrifuging the extracts (12,000×g for  
15 min), the supernatants were stored at –20°C.

Total phenolic content. The total phenolic content 
was determined by the Folin-Ciocalteu method with 
slight modifications [25]. For this, 50 μL of the extract 
was added to 100 μL of the Folin-Ciocalteu phenol re-
agent (Sigma Aldrich, St. Louis, USA). After 10 min 
incubation, 2 mL of Na2CO3 (1.0% w/v) was added to 
the mixture and allowed it to react for 90 min. The ab-
sorbance was measured at 750 nm using a spectropho- 

tometer (Jenway, ColePalmer, St. Neots, UK). Gallic 
acid was used as a standard (50–800 µg/mL). The re-
sults were expressed as milligram gallic acid equivalents  
per 100 g dry weight (mg GAE/100 g DW).

DPPH radical scavenging assay. The determina-
tion of DPPH (2.2-Diphenyl-1-picrylhydrazyl) radical 
scavenging capacities was carried out in agreement with 
the method outlined by Chen et al. [26] with some modi- 
fications. For this, 100 µL of the extract was mixed with 
a DPPH ethanolic solution (900 µL, 100 μM) (Sigma Ald- 
rich, St. Louis, USA) and incubated at 25°C for 30 min 
in darkness. The absorbance was measured at 517 nm 
using a spectrophotometer, and ascorbic acid was used as  
a standard (10.5–176 µg/mL). The results were expressed 
as milligram ascorbic acid (Sigma Aldrich, St. Louis, USA)  
equivalents per 100 g dry weight (mg AAE/100 g DW).

Cupric reducing antioxidant capacity. The anti- 
oxidant capacity of the water extracts was determined 
according to the cupric reducing antioxidant capacity 
(CUPRAC) method described by Gouda and Amin [27] 
with minor modifications. The reaction mixture was pre-
pared with 3 mL of an acetate buffer (50 mM, pH 5.0) 
(Sigma Aldrich, St. Louis, USA), 2 mL of a neocuproine 
solution (5 mM) (Sigma Aldrich, St. Louis, USA), and 
1 mL of 0.01 M CuCl2 (Cicarelli, Cordoba, Argentina). 
Then, 100 μL of the extract and 900 µL of the reaction 
mixture were mixed and manually shaken. After 1 h of 
incubation in darkness, the absorbance was measured at 
450 nm in a spectrophotometer. Ascorbic acid was used 
as a standard (10.5–176 µg/mL). The results were ex-
pressed as mg AAE/100 g DW.

Statistical data analysis. The numerical values rep-
resent mean values derived from triplicate samples and 
presented as mean ± standard deviation. The data were 
subjected to two- and one-way ANOVA, and significant 
differences between the means (p < 0.05) were deter-
mined by Tukey’s test. InfoStat statistical software was 
used for all data analysis.

RESULTS AND DISCUSSION
The fermentation processes were monitored through 

LAB count and pH measurement. The spontaneous 
and controlled fermentations exhibited a similar trend, 
namely an increase in LAB during the initial period 
and a decrease in pH caused by organic acid production 
during carbohydrate metabolism (Fig. 1).

The spontaneous processes exhibited pH of ≈ 6 and 
LAB counts of ≈ 4 log CFU/g at the initial time for the 
three cabbages. These results are consistent with prior 
research on fermented cabbage [23, 24]. The LAB popu- 
lation increased (≈ 7.8 log CFU/g), while the pH values 
dropped (≈ 4.6) after three days for all the cases. Later, 
the pH values continued to decrease in the three vege- 
tables, exhibiting values of ≈ 4 after 30 days of the assay. 
At the same time, the LAB count dropped gradually to 
≈ 6.6 log CFU/g after 15 and 20 days of fermentation in 
Chinese cabbage supplemented with U. pinnatifida and 
red cabbage supplemented with U. pinnatifida, respec-
tively (p ≤ 0.05). Meanwhile, the decrease of LAB was 
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slighter in white cabbage supplemented with U. pinnati- 
fida than in the other mixed models, at ≈ 7.3 log CFU/g 
after 15 days of the process (p ≤ 0.05). These values re-
mained stable until the end of the trial for the three vege-
tables (p > 0.05). 

The controlled fermentation showed pH of ≈ 6 and 
LAB counts of ≈ 5 log CFU/g at the initial fermentation 
period. The indigenous biota was previously reduced by  
the thermal treatment, and a starter culture with Leuconos- 
toc species was added, as suggested by Parada et al. [24]. 
This process showed a significant drop in pH after one 
day for all the cabbages supplemented with Undaria 
(p ≤ 0.05). Recent studies have observed a notable de-
crease in pH levels when Ln. mesenteroides strains were 
used as starter cultures in vegetable fermentations [24, 
28]. Later, a second starter culture with selected Lacti-
plantibacillus strains was added after three days, when 
the pH values dropped to ≈ 4, and the LAB cell counts 
increased to ≈ 8 log CFU/g. Then, LAB populations de-
creased gradually in all the samples, exhibiting values 
of ≈ 5.8 log CFU/g at the end of the assay. Meanwhile, 
the pH reached < 4, which was lower than in the sponta-
neous fermentation of the Chinese and red cabbages sup-
plemented with U. pinnatifida (p ≤ 0.05), with the white 
cabbage sample showing no differences (p > 0.05).

Previous reports showed a maximum LAB count on 
the seventh day of fermentation followed by a slight de-
crease [29, 30]. We observed a similar trend in the three 
mixed models. According to Brochu [29], the algae sig-
nificantly affected LAB development in sauerkraut due 
to the presence of complex polysaccharides that are diffi-
cult to metabolize. However, the fermentation conditions 
in our study did not significantly affect LAB growth, 

which showed similar values to those obtained in the 
previously published research on cabbage fermentations 
(simple model) [24]. Even though Undaria did not pro-
vide fermentable carbohydrates to the matrices [29], it 
did increase the content and diversity of vitamins and 
minerals [31, 32], contributing to the complex nutritional 
requirement of LAB.

The beneficial effects of cabbage on human health 
have been linked to phytochemicals, mainly phenolic 
compounds [13]. Furthermore, previous reports stressed 
the effect of polyphenols in U. pinnatifida on human 
health, highlighting their antioxidant activity [6, 7, 31]. 
In this study, we evaluated the evolution of the total 
phenolic content in the water extracts obtained from the 
Chinese, white, and red cabbages supplemented with Un- 
daria during spontaneous and controlled fermentation 
processes (Fig. 2). 

The red cabbage sample showed higher values of the 
total phenolic content (TPC) than the Chinese and white 
samples, regardless of the fermentation type (p ≤ 0.05). 
Similar differences were reported for the fresh samples 
of Chinese cabbage (347.46 mg GAE/100 g DW) [33], 
white cabbage (980–1220 mg GAE/100 g DW) [34], and 
red cabbage (1851 mg GAE/100 g DW) [35], as well as 
for their fermented samples without seaweed (simple 
model) [24]. The Brassica vegetables contain a great 
diversity of phenolic compounds, with over 30 antho- 
cyanin pigments previously identified only in red cab-
bage extract [17]. 

The evolution of the TPC in the supplemented Chi- 
nese cabbage was similar between the spontaneous 
and controlled processes (Fig. 2a). The TPC increased 
during the first three days of fermentation and then 

Figure 1 Total lactic acid bacteria (−) and pH changes (− − −) determined in cabbage during controlled (□) and spontaneous ( ) 
fermentation of: a – Chinese cabbage, b – white cabbage, and c – red cabbage, each supplemented with U. pinnatifida
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gradually decreased (p ≤ 0.05). The spontaneous fer-
mentation exhibited higher TPC values than the con-
trolled process at 30 days. When comparing both mod-
els (mixed and simple) during controlled fermentation, 
we found higher TPC values in the Chinese cabbage 
with U. pinnatifida compared to the one without the  
algae during the initial period. After that, the difference 
was no longer significant (p > 0.05) (761.9 ± 14.2 and 
726.5 ± 25.1 mg GAE/100 g DW for the Chinese cab-
bage with and without U. pinnatifida, respectively, on 
day 30) [24]. 

The controlled fermentation of the white cabbage 
with U. pinnatifida showed a significant increase in 
the TPC on day one of the fermentation. These values  
remained stable until day 20 and then decreased until 
the end of the assay. However, the values were signifi-
cantly higher than the ones for the fresh vegetables. 
Parada et al. [24] reported a similar tendency in the 
simple model of while cabbage (without algae) fermen- 
ted with the same starter strains. Meanwhile, the spon-
taneous fermentation of the supplemented white cab-
bage showed a significant increase in the TPC on day 
three of the process, followed by a gradual decrease 
after 20 days. The controlled fermentation of the WCU 
showed higher TPC values than the spontaneous pro-
cess after the end of the assay (p ≤ 0.05). These TPC 
values were not significantly different (p > 0.05) from 
the values previously reported in the simple model of 
white cabbage (without algae) during the controlled pro-
cess (842.9 ± 15.0 and 847.7 ± 37.5 mg GAE/100 g DW 
for the white cabbage with and without U. pinnatifida, 
respectively, on day 30) [24].

Lastly, the red cabbage supplemented with U. pin- 
natifida had significantly higher TPC values on the first 
day of controlled fermentation, and these values re-
mained stable until day 30. Meanwhile, the spontaneous 
process showed similar TPC values after three days, 
with a decrease on day 20. However, the TPC values 
achieved on day 30 did not show a significant difference 
between both fermentations (p > 0.05). Parada et al. [24]  
reported lower TPC values in the simple model of red 
cabbage compared to the model mixed with U. pinnati-
fida. These differences were exhibited from day five to 
the end of the controlled fermentation trial (p ≤ 0.05) 
(2059.4 ± 62.7 and 1657.1 ± 118,2 mg GAE/100 g DW  
for the red cabbage with and without U. pinnatifida, re-
spectively, on day 30). Notably, the TPC values at the 
end of fermentation were higher than the ones for the 
fresh vegetables.

The TPC showed a similar tendency during control- 
led fermentation of the mixed models, increasing in 
the first days and, in some cases, decreasing signifi- 
cantly during the intermediate and final stages of  
the process. Meanwhile, the LAB count was high and 
pH values were low. However, variations in the TPC 
values were observed between the vegetable species. 
Hunaefi et al. [36], who used an L. plantarum strain to 
ferment red cabbage, reported a similar tendency. Fur-
thermore, the controlled fermentations of the same veg-
etables (without adding Undaria), with the inoculation 
of identical starter cultures in a two-step process, ex-
hibited similar variations [24]. Lactobacilli have been 
observed to exhibit a higher tolerance towards phe- 
nolic compounds compared to other bacterial groups.  
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Figure 2 Total phenolic content in water extracts of: a – Chinese cabbage, b – white cabbage, and c – red cabbage during 
spontaneous ( ) and controlled (□) fermentation, each supplemented with U. pinnatifida
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The strains of L. plantarum stand out mainly because of 
their mechanisms for mitigating the impact of these me-
tabolites [37]. In this study, the strains used in the sec-
ond inoculum exhibited tolerance to phenol, gallic acid, 
and tannic acid, as well as pectinase and tannase activi- 
ty in the previous trials [24]. Thus, the selected strains 
could contribute to the metabolization of the phenolics 
in the vegetable matrix (U. pinnatifida and Brassica), as  
well as an increment in organic acids, consequently caus- 
ing a decrease in TPC values and an increase in other 
biologically active compounds [33, 36–38]. 

Undaria contains a wide variety of bioactive com- 
pounds, such as phenolic compounds and caroteno- 
ids [31, 32], while cabbages can also display gluco- 
sinolates, anthocyanins, and tocopherols [39]. However, 
most antioxidant compounds in plants are phenols that 
act as reducing agents, metal chelators, and singlet 
oxygen inhibitors [40]. 

In this study, we used the DPPH radical scavenging 
method and the CUPRAC reduction assay to determine 
the antioxidant capacity. These electron transfer-based 
methods are commonly employed to assess phenolic com- 
pounds’ antioxidant capacity in various food sources [41].  
Due to its versatility and accuracy, the DPPH radical 
scavenging assay is one of the most frequently used 
methods for evaluating antioxidant activity. This method 
is based on the electron donation of antioxidants that in- 
duces the loss of color in the DPPH. The change in the 
optical density is proportional to the antioxidant acti- 
vity. The CUPRAC method, a variant of the FRAP (ferric  
reducing antioxidant power) assay, measures the reduc- 
tion of cupric (Cu2+) to cuprous (Cu+) ions by antioxi- 
dants [41, 42].

The antiradical activity of the cabbage samples 
against the DPPH radical can be observed in Figure 3.  
In the Chinese cabbage supplemented with U. pinnati- 
fida, the controlled fermentation exhibited a higher 
reducing power than the spontaneous process (p ≤ 0.05) 
(Fig. 3a). The antioxidant capacity of the supplemented 
Chinese cabbage sample increased significantly during 
the first ten days, remaining stable until the end of 
the controlled process. In contrast, the spontaneous 
fermentation of the CCU did not exhibit significant 
variations during all the assays (p > 0.05). According to 
Parada et al. [24], the antioxidant capacity of the simple 
model of fermented Chinese cabbage was comparable 
with that of the mixed model (with U. pinnatifida)  
in similar conditions (p > 0.05) (219.1 ± 6.7 and 199.6 ± 
7.7 mg AAE/100 g DW for the Chinese cabbage with and 
without U. pinnatifida, respectively, on day 30).

In the white cabbage supplemented with U. pinnati- 
fida, the antioxidant capacity increased significantly 
during both fermentation types (p ≤ 0.05). However, the 
controlled process exhibited a higher reducing power 
than the spontaneous fermentation (p ≤ 0.05) (Fig. 3b). 
In the controlled and spontaneous processes, the extract 
displayed a significant increase in the reduction power  
until day ten and day three, respectively (p ≤ 0.05). 
Then, the values obtained in each process remained sta-
ble until day 30. 

The antioxidant capacity of the mixed model of 
white cabbage was higher than that of the simple mo- 
del, as previously reported by [24], during both control- 
led processes (p ≤ 0.05) (319.3 ± 12.3 and 202.9 ±  
7.2 mg AAE/100 g DW for the white cabbage with and 
without U. pinnatifida, respectively, on day 30). 

                                                       a                                                                                                     b

c

Figure 3 Antioxidant capacity (DPPH method) in water extracts of: a – Chinese cabbage, b – white cabbage, and c – red cabbage 
supplemented with U. pinnatifida during spontaneous ( ) and controlled (□) fermentation
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Regarding the supplemented red cabbage, its wa-
ter extracts exhibited a higher reducing power than the 
CCU and WCU, regardless of the fermentation type. 
Parada et al. [24] showed a similar tendency between 
the fermented simple models. In the controlled fermen-
tation, the supplemented red cabbage sample showed a 
significant increase in the antioxidant capacity until day 
five, with no changes observed afterwards. However, the 
spontaneous process showed an increase during the last 
period of the assay (25 days) (Fig. 3c). After 20 days, 
the controlled fermentation of the RCU exhibited high-
er antioxidant capacity than the spontaneous process  
(p ≤ 0.05). The antioxidant capacity of the mixed mo- 
del of red cabbage during controlled fermentation was 
comparable with the values previously reported for the 
simple model under similar process conditions [24]  
(p > 0.05) (608.0 ± 9.3 and 567.5 ± 16.8 mg AAE/100 g DW  
for the red cabbage with and without U. pinnatifida, re-
spectively, on day 30). 

In all the cases, the DPPH radical scavenging capaci-
ty increased as natural and inoculated fermentation pro-
gressed. This tendency agrees with the results reported 
by other authors [29, 38]. Furthermore, in all the cases, 
controlled fermentation displayed higher values of anti- 
oxidant activity than spontaneous fermentation at the 
end of the process (p ≤ 0.05). According to previous 
reports, the inoculation with L. plantarum has a signifi- 
cative effect on antioxidant activity [24, 36]. Lactiplan-
tarum spp. strains as a starter culture can hydrolyze the 
ester bonds in hydrolysable tannins, releasing potent  
antioxidant compounds, such as gallic acid and pyro-
gallol, through the tannase activity [38]. In addition, the 

pectinase activity can modify the texture of cabbage 
during fermentation [33], allowing the release of pheno-
lic compounds. 

The antiradical activity of the samples determined by 
the CUPRAC method can be observed in Figure 4. The 
AAE values obtained through the CUPRAC assay were 
higher than those exhibited by DPPH in all the cases 
(p ≤ 0.05). These dissimilarities were related to the ca-
pacity of each method. The CUPRAC method can detect 
hydrophilic and lipophilic antioxidants in the sample, 
whereas the DPPH method can determine only those 
molecules which are soluble in organic solvents [42].

The water extracts of the Chinese cabbage supple-
mented with U. pinnatifida exhibited different antioxi- 
dant capacity depending on the type of fermentation 
(Fig. 4a). In the controlled process, their antioxidant  
capacity increased significantly until day 20, followed 
by a decrease in the last days of the assay (p ≤ 0.05). 
However, the spontaneous fermentation did not exhi- 
bit significant differences during the process (p > 0.05). 
The controlled fermentation displayed higher reduc- 
tion power than the spontaneous process (p ≤ 0.05). 
Parada et al. [24] reported higher antioxidant capacity 
in the Chinese cabbage simple model (without algae) 
than in the mixed model exposed to similar control- 
led fermentation conditions (p ≤ 0.05) (477.6 ± 16.9  
and 676.4 ± 37.2 mg AAE/100 g DW for the Chinese 
cabbage with and without U. pinnatifida, respectively, 
on day 30).

In the spontaneous and controlled fermentation, the 
white cabbage samples supplemented with U. pinnatifida 
showed increasing antioxidant capacity until day three 

Figure 4 Antioxidant capacity (CUPRAC method) in water extracts of: a – Chinese cabbage, b – white cabbage, and c – red 
cabbage supplemented with U. pinnatifida during spontaneous ( ) and controlled (□) fermentation
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and day five, respectively (p ≤ 0.05) (Fig. 4b). Then, the 
antioxidant capacity remained constant until day 30 
(p > 0.05) for both types of fermentation. Notably, the 
controlled process displayed a higher antioxidant ca- 
pacity than the spontaneous fermentation (p ≤ 0.05). 
The mixed model of white cabbage exhibited a compara-
ble evolution of the antioxidant activity to the one of the 
simple model, as previously reported [24], under similar 
controlled fermentation conditions (p > 0.05) (631.1 ± 
28.5 and 694.5 ± 21.9 mg AAE/100 g DW for the white 
cabbage with and without U. pinnatifida, respectively, 
on day 30). 

Lastly, the supplemented red cabbage extracts dis-
played similar tendencies during the controlled and 
spontaneous fermentation (Fig. 4c), with an increase 
in antioxidant capacity observed on days one and five, 
respectively (p ≤ 0.05). Then, these values remained 
stable until day 30 in both processes (p > 0.05). Only 
during the initial stage did the controlled fermentation 
show higher values of the antioxidant capacity than the 
spontaneous process (p ≤ 0.05). In the controlled fer-
mentation, the mixed model of red cabbage showed simi- 
lar values to those for the simple model, as previously  
reported [24], (p > 0.05) (1788.2 ± 63.2 and 1890.7 ± 
77.4 mg AAE/100 g DW for the red cabbage with and 
without U. pinnatifida, respectively, on day 30). 

The red cabbage supplemented with U. pinnatifida 
exhibited a higher antioxidant capacity than the supple-
mented Chinese and white cabbage samples, regardless 
of the fermentation type or method (DPPH/CUPRAC). 
This tendency was observed previously in the simple- 
model fermentations (without Undaria) [24]. Additional-
ly, the antioxidant capacity of the fermented cabbages at 
the end of the assay was significantly higher than that for 
the fresh vegetables, except for the spontaneously fer-
mented Chinese cabbage.

After analyzing the simple and mixed models under 
controlled fermentation conditions, we found that adding 
U. pinnatifida did not significantly increase the antioxi- 
dant capacity of any of the fermented vegetable matrices  
studied. However, U. pinnatifida supplementation in these  
types of matrices provides a greater diversity of avail-
able minerals and metabolic compounds (fucoidans, algi- 
nates, polyphenols, fucosterols, and carotenoids, among 
others) with nutritional, functional, and biological prop-
erties beneficial to the consumer’s health [5, 6, 31]. Fur-
thermore, controlled fermentation exhibited significantly 

higher antioxidant activity than spontaneous fermenta-
tion in all the mixed models, which was consistent with 
Parada’s analysis [24] for the simple model.

CONCLUSION
Current research aimed to improve the nutrition-

al properties of foods and develop functional foods 
through supplementation with seaweed to increase their 
health benefits. This study was the first to use U. pinnati- 
fida in the fermentation of cabbages in Argentina. No-
tably, supplementing the vegetable matrix with 20% of 
the algae did not affect the development of lactic fermen-
tation. While the total phenolic content varied between 
the cabbages and fermentation types, the antioxidant ca-
pacity obtained by both methods (DPPH and CUPRAC) 
was significantly higher in the controlled process than in 
the spontaneous one in all the cases. All the mixed mod-
els (Chinese, white, and red cabbages supplemented with 
Undaria) exhibited higher or similar values of the total 
phenolic content and antioxidant capacity compared to 
the simple models (without the algae) under similar con-
ditions of controlled fermentation and extraction (except 
for the supplemented Chinese cabbage when applying 
the CUPRAC method). The high total phenolic content 
and antioxidant activity exhibited by the supplemented 
red cabbage sample suggest its use as a functional food 
product and a new alternative for consuming Undaria  
algae, taking advantage of the scarcely exploited re-
sources on our coasts.
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