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Abstract: 
The gut microbiota is called the “main organ” of the host organism due to its important role in maintaining the normal func- 
tioning of the body. Dysbacteriosis is one of the risk factors for chronic diseases. It can cause metabolic and neural disorders, 
inflammatory and other reactions that reduce a healthy lifespan. This calls for developing bioactive supplements with a gero- 
protective effect to promote health. In this review, we aimed to study the relationship between the gut microbiota and the host 
organism.
This systematic review covered scientific papers published from 2013–2024 and indexed by eLIBRARY.RU, the National Center 
for Biotechnology Information, and Scopus. 
Dysbacteriosis can lead to a number of diseases that have a cumulative negative effect on the gut microbiota. Regardless of the 
state of health, the following factors affect the gut microbiota in the decreasing order: diet > sleep > circadian rhythm > physical 
activity. There is a need for developing bioactive supplements with geroprotective potential to normalize the functioning of 
the microbiota. In particular, these supplements can contain probiotics, prebiotics, and plant metabolites. Lactococcus, 
Lactobacillus, and Bifidobacterium can be used as probiotics. Prebiotics include arabinogalactan, galactooligosaccharides, 
inulin, lactulose, oligofructose, xylo-oligosaccharide, fructooligosaccharide, or their mixtures. Among plant metabolites, espe- 
cially important are polyphenols, including the ones from green tea, fruits and berries, as well as resveratrol, allicin, quercetin, 
curcumin, and others. However, not all of them are easily bioavailable and soluble. Encapsulation is often used to address 
the problem of bioavailability. The ketogenic diet and fasting-mimicking diets have the potential to increase a healthy life 
expectancy. The potential of dietary supplements to normalize the gut microbiota can be studied by in vitro experiments that 
use artificial gastrointestinal tracts.
Our results can provide a foundation for further research into the role of the gut microbiota in maintaining the health of the host 
organism.
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INTRODUCTION
Despite modern advances in science and technology, 

longer life expectancy is accompanied with chronic di- 
seases. These include diseases of the musculoskeletal 
system, immune and cardiovascular systems, metabolic 
and neurodegenerative disorders, as well as cancer. We 
know today that the human body health largely depends 
on the gastrointestinal tract microbiota [1, 2].

The gut microbiota is a community of microorganisms  
(their common genetic material) that inhabit the gastro- 
intestinal tract of the host organism [3–5]. The micro- 
biota plays an important role in the functioning of the 
host organism, regulating its immune, endocrine, and 
other systems (Fig. 1) [6].

Throughout its long evolution, the intestinal micro- 
biota constantly adapts to the unique characteristics of a  
body, maintaining intestinal homeostasis. Microorganisms  
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that inhabit the intestine extract nutrients from the body, 
break down hard-to-digest food residues, and participate 
in the metabolism of nutrients in the intestinal environ-
ment [7]. The disruption of their normal functioning crea- 
tes a risk of developing chronic diseases. Therefore, we 
need to study the relationship between the microbiota 
and the health of the host organism in order to be able to 
regulate it [7, 8].

Old age (60–75 years) is associated with certain chan- 
ges in the composition of the gut microbiota. They in-
clude lower biodiversity of normal microbiota, larger 
numbers of opportunistic strains, as well as their conse-
quences. Such changes are caused, among other things, 
by the negative impact of environmental factors, partic-
ularly nutrition [1, 9]. Therefore, measures need to be ta- 
ken to improve the biodiversity and normal functioning 
of the gut microbiota [1]. One of them is dietary inter-
vention [10–13]. This calls for developing functional 
foods and food ingredients, as well as dietary supple-
ments that normalize the functioning of the gut micro-
biota. However, we first need to know what functional 
food ingredients and nutrients have a positive impact on 
the gut microbiota and, therefore, exhibit a geroprotec-
tive effect. We also need to understand the mechanism of 
their action.

This review aimed to investigate the role of the gut 
microbiota in the functioning of the host organism and 
ensuring its healthy aging. We also explored ways of im- 
pacting the microbiota and methods for assessing its 
changes under the influence of various dietary factors.

To achieve this aim, our objectives were to study:
– the definition of the gut microbiota and its relationship 
with chronic diseases and aging;
– the main metabolites of the microbiota that regulate the 
state of the host organism;
– functional food ingredients that can help maintain the 
normal functioning of the gut microbiota; and
– methods for in vitro studies to determine the effect of 
functional food ingredients on the gut microbiota.

This review can be used as a foundation for designing  
further research to create bioactive supplements contai- 
ning functional ingredients with geroprotective activity. 
It covers the most important representatives of the micro- 
biota, as well as the conditions and methods of conduc- 
ting microbiota experiments. 

STUDY OBJECTS AND METHODS
We reviewed scientific articles published in English 

and Russian and indexed in the databases of the Russian 
Scientific Electronic Library (eLIBRARY.RU); Nation-
al Center for Biotechnology Information (NCBI), inclu- 
ding PubMed; and Scopus (Elsevier). Intellectual pro- 
perty information was accessed via the Federal Insti-
tute of Industrial Property (https://www.fips.ru/) and the  
PATENTSCOPE database.

The search keywords included gut microbiota, the in-
fluence of gut microbiota on aging, gastrointestinal bio-
transformation in vitro, artificial gastrointestinal tract, 
microbiota modeling, artificial gastrointestinal tract, 
probiotics, prebiotics, lactic acid bacteria, nutrition, and 
aging.

The review covered publications from 2013 to 2024, 
a well as some highly relevant articles published be- 
fore 2013.

A total of 187 publications were selected for this re-
view. During the selection process, we prioritized the 
papers describing the results of clinical or preclinical 
studies (regardless of the model objects), as well as re-
view papers. Excluded from the review were in silico 
studies, conference proceedings, and studies of the micro- 
biome of the skin, lungs, and other organs. 

RESULTS AND DISCUSSION 
The gut microbiota is a complex, dynamic, and spa-

tially heterogeneous ecosystem. It is a community of 
microorganisms that interact both with each other and 
with the host organism. They include bacteria, fungi,  

Figure 1 Factors affecting the gut microbiota and its role in regulating the ost organism 
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archaea, and viruses [7]. The gut microbiota is conside- 
a symbiotic relationship with the host organism, helping 
maintain its normal physiological processes and dyna- 
mic equilibrium [4, 14].

The normal functioning of the gut microbiota de-
pends on its qualitative and quantitative diversity. The 
microbiota of an adult human includes four key catego- 
ries of microorganisms: Firmicutes (Gram-positive), Bac- 
teroides (Gram-negative), Actinomycetes (Gram-positive),  
and Proteus (Gram-negative) (Table 1). The ratio of Firmi- 
cutes and Bacteroidetes is an important indicator of dis-
turbances in the functioning of the microbiota [2, 7, 15].

Five main groups of bacteria inhabit the human gastro- 
intestinal mucosa: Bacteroides, Proteobacteria (gram- 
negative), Actinobacteria, Verrucomicrobia (gram-nega-
tive), and Firmicutes. The most common anaerobic micro- 
organisms are Bacteroides, Eubacteria, Bifidobacteria, 
Peptostreptococci, Clostridia, and Ruminococci [17, 18]. 

Various diseases can be caused by any changes in the 
composition and diversity of the gut microbiota that lead 
to a decrease in beneficial bacteria and an increase in 
opportunistic bacteria (dysbacteriosis). Conversely, the 
progression of diseases can change the number and di-
versity of microbiota strains [19].

Gut microbiota and its relation to chronic disease 
and premature aging. The microbiota inhabiting diffe- 
rent parts of the gastrointestinal tract differs in its quali- 
tative and quantitative composition. The stomach, the 
duodenum, the jejunum, the ileum, and the colon con-
tain about 101, 103, 103, 107, and 1012 cells/g contents, res- 
pectively. Every person has unique microbiota that has 
adapted to the conditions of his or her life [16]. 

The composition of the microbiota can be assessed 
by using various omics technologies. These include poly- 
merase chain reaction (PCR) [20], sequencing fragments 
of the ribosomal 16S RNA gene of the new genera- 
tion, and shotgun sequencing of the whole genome [4]. 
Zhong et al. [21] proposed a CRISPR-Cas amplicon  

sequencing (CCSAS) method to study eukaryotes as 
representatives of the microbiota.

Microbiotic imbalance can contribute to the develop- 
ment of chronic diseases (Table 2). They include diseases  
of the digestive tract such as inflammatory bowel disea- 
ses (ulcerative colitis and Crohn’s disease) and colorectal 
cancer [22–24].

Caruso et al. [22] reported a decrease in the diver- 
sity of microorganisms in the intestines of patients with 
inflammatory bowel disease (IBD) compared to healthy 
individuals. In particular, the authors found a signifi- 
cant decrease in Firmicutes and an increase in Entero-
bacter and Proteobacteria, as well as changes in fungal 
microbiota.

According to Li et al. [34], Crohn’s disease elevates 
the diversity of fungi, such as Candida albicans, Asper-
gillus albicans, and Cryptococcus neoformans, in the co- 
lon and ileum. This fungal composition was typical of 
the inflamed intestinal mucosa compared to the non- 
inflamed area with no fungi.

Dysbacteriosis is also associated with an increased 
risk of metabolic disorders and chronic diseases, such as  
obesity and type 2 diabetes, cardiovascular diseases, and 
cancer. Among the top causes of death, these diseases 
pose a serious threat to people’s health and life. This calls 
for research into the relationship between the gut micro- 
biota and the health of the host organism [7, 42–45].

Wu et al. [9] explored the role of the gut microbiota  
in healthy aging and longevity. They conducted their 
study in Sardinia, a large island in the Mediterranean 
Sea whose population is homogeneous in terms of diet 
and lifestyle and is represented by a large number of 
centenarians. The researchers found that:

1. The taxonomic composition of the microbiota was 
statistically similar in the young and old people, but dif-
fered from that of the centenarians.

2. The gut microbiota of the long-lived islanders was 
dominated by Methanobrevibacter smithii and Bifido-

Table 1 Human gastrointestinal tract microbiota (sourced from Bikbavova [16])

Type Firmicutes Bacteroidetes Actinobacteria Proteobacteria
Genus Bacillus

Acetobacter
Clostridium
Ruminococcus
Lachnospiraceae
Roseburia
Faecalibacterium
Eubacterium
Lactobacillus
Enterococcus
Heliobacterium
Heliospirillum
Leuconostoc
Mycoplasma
Spiroplasma
Sporomusa
Staphylococcus
Streptococcu

Bacteroides
Prevotella
Parabacteroides
Alistipes
Porphyromonas
Chlorobium
Flavobacterium
Chlamidia
Prosthecobacter
Verrucomicrobium

Bifidobacterium
Corynebacterium
Propionibacterium
Arthrobacter
Micrococcus
Francia
Mycobacterium

Enterobacteraceae
Esherichia
Shigella
Salmonella
Escherichia
Desulfovibrio
Klebsiella
Moraxella
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bacterium adolescentis, with low numbers of Faecalibac- 
terium prausnitzii, Eubacterium rectale, and Ruminococ- 
cus sp.

3. The microbiota of the centenarians exhibited a 
high capacity for glycolysis (glucose oxidation), which 
was presumably associated with the predominance of 
Lactobacillus and Escherichia.

4. The microbiota of the centenarians showed a high 
capacity to produce short-chain fatty acids despite a re-
duced capacity to break down carbohydrates. 

Other studies have found low microbial diversity in 
older people. This low diversity is associated with life-
style factors, including heavy medication use, changes 
in hormonal status and diet, and severe somatic disea- 
ses [46, 47]. Moreover, the gut microbiota is affected by 
limitations associated with aging. These include prob-
lems with digestion, lack of appetite, refusal to eat, or 
the inability to absorb a number of nutrients. 

The influence of the gut microbiota on the health of 
the host organism is based on complex regulatory mecha- 
nisms. Knowing these mechanisms, we can develop new, 
and improve the existing, preventative and therapeu- 
tic measures.

Omics technologies are instrumental in exploring the 
influence of microbiota on the health of the organism. 
Today we know that microbiota can regulate the main 
biological processes of the host organism by producing 
bioactive substances [7]. 

Despite some general patterns in microbiotic compo- 
sition, its individual variations can be quite significant. 
There is no single model of healthy microbiota that 
would be applicable to all people. The Human Microbi-
ome project has studied healthy microbiota, i.e. the micro- 
biota of adults with no signs of disease [48]. Its results 
are used for reference purposes in a number of stu- 
dies [49]. However, each person has unique microbiota 
and microbiotic diversity cannot be the only factor in 
health prognosis. 

The composition of the microbiota varies depending 
on a person’s adaptation to environmental factors, as 
well as their genetic and physiological characteristics [10, 
50]. People with the same eating habits and lifestyle can 
have completely different microbial communities. This 
suggests that genetic and climatic factors are also key to 
the microbiome. Changes in the gut microbiota can be 
caused by antibiotic use [51], stress, or dietary habits, 
with both short-term and long-term health consequences. 
Therefore, it is important to study these changes in the 
microbiota and its response to external stimuli [52].

The genetic consortium of all microorganisms living  
in the intestine significantly exceeds the human genome [7].  
The human genome consists of about 23 000 genes, while  
the microbiome encodes more than 3 million genes, pro-
ducing a large number of metabolites that regulate the 
functions of the host organism [4]. To a certain extent, 
gene mutations can influence the composition of the 
gut microbiota. For example, people with mutations in  
nucleotide oligomerization domain-containing protein 2  
(NOD2) have an increased number of Enterobacteriaceae.  

Table 2 Quantitative composition of microbiota and its relation 
to diseases

Microorganism Disease Model Source
↑ Bifidobacterium,
↑ Pasteurella,
↑ Enterococcus,
↓ Brautella,
↓ Prevotella,
↓ Faecococcus

Parkinson’s 
disease

Mice [7]

↑ Escherichia,
↑ Shigella 

Alzheimer’s 
disease

Mice [7]

↑ Firmicutes,
↑ Bacteroidetes

Hypertension Humans [25]

↑ Enterobacteriaceae,
↑ Enterobacteraerogenes

Athero- 
sclerosis

Humans [26]

↑ Phylum Firmicutes,
↓ Akkermansia muciniphila, 
↑ Faecalibacterium 
prausnitzii, 
↓ Bacteroides 

Obesity Mice 
Humans

[27–
29]

↑ Rumenococcus, 
↑ Desulfovibrio, 
↑ Enterobacter, 
↑ Bacteroides,
↑ Prevotella,
↓ Bifidobacterium,
↓ Fischeri

Type 2 
diabetes

Humans [29, 
30]

↑ Faecalibacteria, 
↑ Lachnospira, 
↑ Ruminococcae, 
↑ Roseburia,
↓ Prevotella copri, 
↓ Bifidobacterium longum

Type 1 
diabetes

Humans [31, 
32]

↑ Lactobacillus,
↑ Streptococcus,
↓ Rumenococcus,
↓ Prevotella,
↓ Flavobacterium

Non-alcoholic 
fatty liver 
disease 
(NAFLD) 

Mice [33]

↓ Enterobacter,
↑ Proteobacteria,
↑ Candida albicans,
↑ Aspergillus albicans,
↑ Cryptococcus neoformans 

Inflammatory 
bowel disease 
(IBD)

Mice
Humans

[24, 
34, 
35]

↑ Escherichia coli,
↑ Bacteroides fragilis,
↑ Fusobacterium nucleatum,
↓ Bifidobacterium,
↓ Lactobacillus,
↓ Bacteroides 

Colorectal 
cancer

Animals [36]

↑ Prevotella denticola, 
↑ Klebsiella, 
↑ Escherichia, 
↑ Eisenbergiella, 
↑ Flavobacterium, 
↑ Fusicatenibacter,
↑ Megamonas, 
↑ Enterococcus, 
↑ Verrucomicrobia,
↑ Proteobacteria,
↓ Bacteroidetes, 
↓ Pholiota, 
↓ Scedosporium,
↓ Trichosporon

Rheumatoid 
arthritis

Humans [37–
41]

↓ – reduced amount of strain; ↑ – increased amount of strain
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To further explore the relationship between host genetics 
and intestinal microbiota, Rothschild et al. [53] analyzed 
the data from the Twins UK study of more than 14 000 
twins. Their results showed a significantly greater influ-
ence of environmental factors on shaping gut microbiota 
compared to host genetics.

Zhang et al. [54] reported that only 2% of microbiota  
taxa are inherited, while over 20% of microbiotic diffe- 
rences in people are associated with drug use and an-
thropometric data. The scientists also found that nutri-
tion accounts for 57% of changes in microbiota, while 
genetic factors account for at least 12% of these changes. 
This raises the importance of nutrition in normalizing 
the functioning of the gut microbiota.

Microbial metabolites related to chronic diseases.  
Metabolomic analysis of fecal samples and biofluids is  
an important tool for studying the impact of food com-
ponents on the intestine and its microbiota [55]. In parti- 
cular, it can provide insights into which food compo-
nents are available to the microbiota, as well as how 
food components are digested, absorbed, and fermented 
in the gastrointestinal tract [55–57]. Gut microbiota me-
tabolites can be analyzed by proton nuclear magnetic 
resonance spectroscopy (1H NMR), chromatographic as- 
says (gas chromatography combined with mass spectro- 
metry (GC-MS), liquid chromatography combined with 
single-stage mass spectrometry (LC-MS)), and other 
methods [58–60].

Cai et al. [61] studied the effect of the substance 
“Tempol” (4-hydroxy-2,2,6,6-tetramethylpiperidine-N- 
oxyl) on the intestinal microbiota of mice by using NMR  
and GC-MS. They found that this substance reduced 
the amount of short-chain fatty acids. A decrease in ace- 
tate, propionate, and butyrate in the cecum was estima- 
ted by 1H NMR at 41, 25, and 39%, respectively, and 
by GC-MS at 28, 63, and 37%, respectively. As can be 
seen, both methods showed similar results for butyrate, 
but not for acetate or propionate. The choice of a me- 
thod for studying microbiota metabolites depends on 
the study object and aim, as well as the resources avail-
able. Yet, it is important to understand their advantages  
and limitations.

Lanng et al. [56] employed NMR analysis to study 
the gut microbiota and metabolic processes during a diet 
where meat protein was partially replaced with insect pro- 
tein. The NMR method is also used to determine the con- 
tents of amino acids and their derivatives, organic acids,  
carbohydrates, short-chain fatty acids, trimethylamine- 
N-oxide (TMAO), and other food components [55].

He et al. [55] and Emwas et al. [58] highlighted the 
advantages and limitations of the NMR method for me-
tabolomic analysis (Table 3).

The NMR method can be applied when there are no 
limitations for the sample size or when the substances 
cannot be analyzed chromatographically. The protocols 
for NMR-based metabolomic research of the gut health 
have been developed by Bervoets et al. [62] for infants 
and by Cui et al. [63] for adults. 

Liquid chromatography-tandem mass spectrometry 
(LC-MS/MS) has become a major tool for analyzing 
complex metabolite compositions. However, none of the 
LC-MS/MS methods is suitable for a direct analysis of 
all metabolites due to insufficient chromatographic re-
tention, low ionization efficiency, and high susceptibility  
to matrix interference. These limitations are partially 
addressed by chemical derivatization [64]. Some deriva- 
tizing agents include Dansyl-Cl, o-phthalaldehyde (OPA),  
Fmoc-Cl, Dabsyl-Cl, and Marfey reagent. The choice of 
an agent depends on the aim of the experiment [65].

The gut microbiota influences the metabolism of the  
host organism by producing enzymes that are not enco- 
ded by the human genome. These enzymes break down  
polysaccharides and polyphenols, as well as synthesize  
vitamins [66]. The nutrient medium for the microbiota 
consists of endogenous mucins and glycoproteins, pro-
teins, oligopeptides, and dietary polysaccharides that 
are not digested by the host organism. Short-chain fatty 
acids (SCFAs) are the main product of carbohydrate fer-
mentation. 

SCFAs affect the immune responses of the muco-
sa. They promote the growth of B-cells and maintain 
the integrity of the mucosa by activating the inflamma- 
some and producing IL-18. Primary acid salts (BAs) 
play an immunomodulatory role by stimulating the FXR  

Table 3 Advantages and limitations of NMR vs. chromatography for metabolomic analysis

Advantages Limitations
Ensures high reproducibility Has lower sensitivity compared  

to chromatographic methods 
Allows for relatively simple sample preparation Is used for non-selective analysis (overlapping peaks from 

several metabolites create serious problems) 
Can be used for quantification without internal standard substances Requires more sample for testing
Can be automated
Allows for studying the metabolome in biomaterial without 
extraction and derivatization 
Can be used for compounds that are difficult to analyze 
chromatographically (sugars, organic acids, alcohols, polyols,  
and other highly-polar compounds) 
Allows for several analyses of the same sample due to its non-
destructive nature 
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receptor. This has an anti-inflammatory effect and pro-
tects the body from chemically induced colitis [67].

Among essential SCFAs are acetate, propionate, and 
butyrate. They are produced during anaerobic fermenta-
tion from organic acids and amino acids. SCFAs play an 
important role in the human body [68], namely:
– provide energy for colon epithelial cells (colonocytes);
serve as a substrate for endogenous metabolites [68];
– enhance the secretion of intestinal mucus and protect 
the mucous layer [69];
– participate in the secretion of insulin [70];
– affect the metabolism of bile acids, cholesterol, and 
trimethylamine oxide (TMAO);
– serve as signaling molecules that activate host G-protein- 
coupled receptors [71–75] regulating antitumor and  anti- 
inflammatory functions; as well as
– affect the expression of host genes by inhibiting histone 
deacetylases (HDAC) [75].

Butyrate and propionate have been found to exhibit 
anti-inflammatory and antitumorous effects. Propionate 
also lowers cholesterol levels. Microbiota can obtain pro- 
pionate from arabinogalactan via three pathways: succi-
nate, acrylate, and propanediol [20, 68]. 

Louis et al. [76] reviewed normal microbiota strains 
that produce butyrate and propionate. They include the 
following strains:

1. Faecalibacterium prausnitzii is an obligate ana- 
erobe, which can also grow at low oxygen concentrations  
in the presence of riboflavin, cysteine, and glutathione. 
The strain grows poorly on starch and hemicellulose but 
it grows well on inulin, pectin, and uronic acids [77].

2. Eubacterium rectale and strains of Roseburia 
spp. produce butyrate (at slightly acidic pH), formate, 
and lactate. They grow on starch, inulin, and arabinoxy- 
lans [78, 79].

3. Bacteroidetes, Negativicutes, and Firmicutes pro-
duce propionate from dietary carbohydrates via the suc-
cinate pathway [68].

4. Lachnospiraceae (Roseburia inulinivorans and 
Blautia) can produce 1,2-propanediol via the propane-
diol pathway from rhamnose and fucose. Bacteroides, 
Escherichia coli and Anaerostipes rhamnosivorans, Clos- 
tridium sphenoides and Saccharomyces cerevisiae, Lac-
tobacillus buchneri produce 1,2-propanediol via lactal-
dehyde. Eubacterium hallii and Lactobacillus reuteri, 
Flavonifractor plautii, Intestinimonas butyriproducens 
and Veillonella spp. convert 1,2-propanediol into propio-
nate and propanol [79, 80].

Kytikova et al. [2] listed the strains that produce  
SCFAs (Table 4).

SCFAs affect cell surface receptors, namely GPR43 
(Free Fatty Acid Receptor 2), GPR41 (Free Fatty Acid 
Receptor 3), and Olfr78 (olfactory receptor 78). SCFAs 
regulate intestinal motility and inflammatory reactions, 
normalize glucose levels, and exhibit cardioprotective 
and anticarcinogenic effects [16, 81]. 

Bacteria also produce intermediate fermentation 
products such as fumarate, succinate, and lactate. Lac-
tate and pyruvate are known to enhance immunity and 
resistance to the action of Salmonella [82].

In addition to SCFAs, microorganisms also produce 
branched-chain fatty acids (BCFAs) by degrading valine, 
leucine, and isoleucine. BCFAs mainly include isobuty- 
rate, methylbutyrate, isovalerate, and isocaproate. The 
mechanism of their influence on the host organism is not 
yet fully understood. However, isovaleric acid has been 
found to activate neurons [83], modulate mitochondrial 
β-oxidation of pyruvate, and alter lipogenesis in adipo-
cytes. It is also important for cholesterol synthesis.

Some microbial metabolites interact with the meta-
bolic and physiological processes in the host organism. 
They include trimethylamine and trimethylamine-N- 
oxide, indolepropionic acid, vitamins, and hormones. 

Trimethylamine (TMA) can enter the body via the 
conversion of choline and L-carnitine by microbiota.  
TMA is synthesized from choline with specific enzymes 
such as CutC (glycylradical enzyme GRE choline TMA-
lyase) and CutD (activator GRE activase). These en-
zymes are encoded by the CutC and CutD genes of the 
bacteria Firmicutes (Anaerococcus hydrogenalis, Clostri- 
dium asparagiforme, Clostridium hathewayi, Clostridi-
um sporogenes), Proteobacteria (Desulfovibrio desulfu-
ricans, Escherichia fergusonii, Proteus penneri, Provi-
dencia rettgeri, Edwardsiella tarda) and Actinobacteria.

TMA can be synthesized from L-carnitine by carni-
tine oxidase and reductase encoded by the genes YeaW 
(Carnitine monooxygenase oxygenase subunit)/YeaX (Car- 
nitine monooxygenase reductase subunit). These genes 
belong to Proteobacteria of the Gammaproteobacteria  
class (Klebsiella pneumoniae, E. coli, Citrobacter, Provi- 
dencia, and Shigella), Betaproteobacteria class (Achro-
mobacter), Firmicutes type (Sporosarcina), and Actino-
bacteria [20]. TMA is subsequently absorbed and con-
verted to trimethylamine-N-oxide (TMAO) [84].

There is a known relationship between TMAO levels 
and cardiovascular diseases. TMAO is involved in the 

Table 4 Gut microbiota bacteria producing SCFAs (sourced from Kytikova et al. [2])

SCFA Strains 
Acetate Bifidobacterium spp., Blautia hydrogentrophica, Prevotella spp., Streptococcus spp., Akkermansia muciniphilia, 

Bacteroides spp., Clostridium spp., Ruminococcus spp.
Butyrate Coprococcus spp., Roseburia inulinivorans, Anaerostipes spp., Coprococcus comes, Coprococcus eutactus, 

Clostridium symbiosum, Eubacterium rectale, Eubacterium hallii, Faecalibacterium spp., Roseburia spp., 
Clostridium spp., Ruminococcus spp.

Propionate Akkermansia muciniphilia, Bacteroides spp., Dalister succinatiphilus, Eubacterium spp., Megasphaera elsdenii, 
Phascolarctobacterium succinatutens, Roseburia spp., Salmonella spp., Veillonella spp., Coprococcus spp., 
Roseburia inulinivorans, Clostridium spp., Ruminococcus spp.
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development of atherosclerosis by converting macro-
phages into foam cells. Therefore, the higher the TMAO 
level, the higher the risk of developing cardiovascular 
diseases [72, 85]. Tang et al. [86] showed that elevated 
TMAO levels in blood plasma can lead to the develop-
ment of chronic kidney disease and cardiovascular disea- 
ses. Regular intake of probiotics and prebiotics can lower  
TMAO levels by regulating the gut microbiota.

Indolepropionic acid (IPA) is a tryptophan deriva- 
tive whose synthesis depends on the gut microbiota.  
Yano et al. [87] showed tryptophan as an important so- 
urce for the synthesis of indoles in the gut microbiota.  
Indoles regulate immune responses of the intestinal mu-
cosa by activating polycyclic aromatic hydrocarbon re-
ceptors [84].

The gut microbiota is capable of synthesizing vita-
min K and B vitamins – biotin (B7), cobalamin (B12), fo-
lates (B9), nicotinic acid (B3), pantothenic acid (B5), pyri- 
doxine (B6), riboflavin (B2), and thiamine (B1) [66, 88]. 
Folates produced by the intestinal microbiota are more 
accessible than synthetic ones since they do not require 
enzymatic transformation. Folates can be synthesized  
de novo by Proteobacteria, Firmicutes, Actinobacteria, 
and Verrucomicrobia [89].

The gut microbiota can synthesize hormones and 
neurotransmitters (Table 5).

Studies have shown that lactic acid bacteria, rather  
than the central nervous system (CNS), are the main so- 
urce of serotonin. This neurotransmitter is produced in 
the presence of glutamate and glucose, which serve as a 
substrate for the strains. This calls for the development 
of probiotics that affect the CNS (psychobiotics). Howe- 
ver, the mechanisms underlying such action of the micro- 
biota on the CNS are not yet fully understood [90].

To improve the health of the body, microbiota-based 
preventative strategies are being actively developed [84], 
namely:
– changing the substrate for microbial fermentation;
– modulating the species composition through nutrition;
– developing probiotic, prebiotic, and synbiotic supple-
ments; and
– transplanting fecal microbiota.

Nutrition plays a special role among these strategies. 
Therefore, there is a need to adjust dietary recommen-

dations, as well as create functional foods and bioactive 
supplements that can normalize the gut microbiota.

Functional food ingredients for the gut microbiota.  
Diet, lifestyle, stress, and antibiotic use significantly af-
fect the microbiotic balance. For example, a diet rich in 
fat and sugar leads to a decrease in beneficial bacteria 
and an increase in pathogenic organisms. This, in turn, 
contributes to the development of inflammatory disea- 
ses [7]. Aya et al. [19] listed the following factors (in de- 
scending order) that cause changes in the microbiota: 
diet > sleep > circadian rhythm > physical activity. Ho- 
wever, the authors ignored the presence of chronic disea- 
ses, which is quite an important factor as well. 

The consumption of prebiotics and probiotics can 
help restore the balance of microflora and improve in-
testinal and overall health [91]. Clinical trials on the use 
of probiotics in the treatment of inflammatory bowel di- 
sease (IBD) have shown positive results. This suggests 
that probiotic therapy can complement the traditional 
drug approaches [7]. Probiotics help modify inflamma-
tory responses, improve intestinal permeability, and 
maintain the immune response. This is extremely impor- 
tant for patients suffering from chronic diseases.

Probiotic microorganisms act in a variety of ways. 
They modulate the immune function, produce organic 
acids and antimicrobial compounds, interact with resi-
dent microbiota and the host, improve the intestinal bar-
rier integrity, and produce enzymes [92]. The intake of 
probiotics and prebiotics has beneficial effects on human 
health and well-being [93].

Prebiotics can be used instead of probiotics or as an 
additional supplement to stimulate the growth and acti- 
vity of beneficial bacteria in the gastrointestinal tract 
(Table 6).

As can be seen from Table 6, Bifidobacterium species 
are most susceptible to prebiotic influence.

Natural products such as inulin and lactulose are im-
portant sources of prebiotics. They can be added to food 
to increase its nutritional content, as well as to benefit 
health by facilitating the absorption of minerals such as 
calcium and magnesium. In addition, the oral adminis-
tration of prebiotics can increase the populations of bene- 
ficial microbiota in the gastrointestinal tract, preventing 
immune-mediated destruction [100].

Table 5 Major bioactive amines synthesized by microbiota (sourced from Gurevich et al. [90])

Microorganism Metabolites Physiological effect
Lactobacillus spp., Enterococcus Histamine Hypotension, allergy
Enterococcus faecalis Tyramine Hypertension, headache

β-phenylethylamine Control of hunger and satiety
Bacillus Dopamine Multiple effects
Bacillus, Escherichia coli Norepinephrine Multiple effects
Bifidobacteria Melatonin Relaxation of smooth muscles, regulation  

of sleep and wakefulness
Lactobacillus bulgaricus, Streptococcus, Escherichia coli Serotonin Multiple effects
Corynebacterium glutamycum, Lactobacillus plantarum, 
Lactobacillus paracasei, Lactococcus lactis

Glutamine Multiple effects

Escherichia coli, Pseudomonas γ-Aminobutyric acid Muscle relaxation, anxiolytic effect
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The probiotic strains Lactococcus, Lactobacillus, and 
Bifidobacterium and the prebiotics inulin, oligofructose, 
and mannan can normalize the functioning of the gut 
microbiota and exhibit a cardioprotective effect [43]. 

Bifidobacteria play an important role in maintaining 
a healthy human gut microbiome [101, 102]. One of their 
major functions is to produce acetate and lactate during 
carbohydrate fermentation. Acetate and lactate can be 
converted to butyrate by other colonic bacteria through 
cross-feeding [102–104].

Active probiotic microbiota exerts several biological 
effects through different mechanisms. Firstly, they com-
pete for nutrients to survive in the gastrointestinal tract 
and thereby prevent pathogenic microorganisms from 
adhering to epithelial cells. Secondly, lactic acid bacte-
ria produce antagonistic compounds such as short-chain 
fatty acids, bacteriocins, and organic acids. They inhibit 
the growth of pathogens and prevent the colonization of 
opportunistic microorganisms. In addition, lactic acid bac- 
teria regulate the immune system by stimulating immu-
noglobulin production, increase the cytotoxicity of natu- 
ral killer cells, and modulate cytokine secretion [105].

Wilson et al. [106] studied the effect of the prebio- 
tic galactooligosaccharide (GOS) on colonic inflamma- 
tion. Seventeen (17) patients with active ulcerative co- 
litis were administered GOS (2.8 g/day) for 6 weeks.  
Although the prebiotic did not lower the clinical scores 
or inflammation, it normalized the patients’ stools. The 
proportions of Bifidobacterium and Christensenellaceae 
increased only in the patients with less active diseases, 
indicating that the prebiotic effect might depend on di- 
sease activity.

Du et al. [107] investigated the effect of fructooligo-
saccharides (FOS) on the composition and metabolism 
of intestinal microbiota in 39 children with functional 
diarrhea. The 16S rRNA sequencing showed that the 
FOS significantly improved α- and β-diversity in the 
volunteers. Particularly, the FOS significantly increased 
probiotic bacteria (e.g., Bifidobacterium) and signifi-
cantly inhibited pathogenic bacteria (e.g., Escherichia –  

Shigella). The analysis of bacterial metabolites after the 
FOS treatment showed that the decrease in isobutyr-
ic acid, isovaleric acid, NH3, and H2S levels positively 
correlated with the relative abundance of Lachnoclos-
tridium and negatively correlated with the abundance  
of Streptococcus.

Zou et al. [108] conducted a meta-analysis of gut 
microbiota in ulcerative colitis (UC) patients to identify 
UC-associated bacterial strains. They aimed to identify 
drugs that could specifically target the gut microbiota to 
mitigate the disease. The scientists screened 164 dietary 
herbal medicines in vitro to identify potential prebiotics 
for the UC-associated bacteria. The UC patients had a 
marked decrease in Bacteroides compared to the healthy 
controls. Bacteroides thetaiotaomicron showed an in-
verse association with the UC symptoms, indicating its 
potential as an anti-colitis agent. 

Wang et al. [109] studied the prebiotic potential of 
polysaccharides obtained from Stellariae Radix and exa- 
mined their effects on the composition of the intestinal 
microbiota in mice. The results demonstrated the high 
ability of crude polysaccharides to stimulate Lactobacil-
lus acidophilus and Bifidobacterium longum. In addition, 
the oral administration of crude polysaccharides to mice 
significantly increased the populations of beneficial bac-
teria and, at the same time, decreased the populations of 
harmful bacteria in their intestinal flora.

The prebiotic potential of epilactose was described 
by Cardoso et al. [110]. The scientists used fecal inocula  
from individuals following the Mediterranean diet or 
vegan diet. The prebiotic properties of epilactose were 
confirmed by the formation of several metabolites (lac-
tate, short-chain fatty acids, and gases). Epilactose sig-
nificantly stimulated the butyrate-producing bacteria. 
This suggested that the donor diet did not affect the pre-
biotic action of epilactose. Butyrate is one of the current 
golden metabolites due to its benefits for the gut and 
systemic health. For the Mediterranean diet donor, bu- 
tyrate production in the presence of epilactose was 70 
and 63 times higher compared to lactulose and raffinose, 

Table 6 Dietary fibers (prebiotics) modulating the activity of beneficial bacteria in the microbiota [94]

Prebiotic Model Effect Source
Arabinogalactan (15 g/day for 6 weeks) 30 people ↓ isovaleric, valeric, and hexanoic acids 

No changes in SCFAs
↓ Firmicutes, ↑ Bacteroidetes, and ↑ Bifidobacterium

[95]

Galactooligosaccharides (21.6 g/day  
for 4 weeks)

24 healthy adults  
and 20 older people

No changes in SCFAs
↑ Bifidobacterium in both groups, but initially less  
Bifidobacterium in older people 

[47]

Inulin (7 or 3 g/day for 4 weeks) 50 healthy adults No changes in SCFAs
↑ Bifidobacterium

[96]

(5 or 7.5 g/day for 3 weeks) 29 healthy adults ↑ Bifidobacterium and ↑ Actinobacteria [97]
Oligofructose (14 g/day  
for 1 week)

19 healthy adults No changes in SCFAs
↑ Bifidobacterium 
↓ Lachnospiraceae

[98]

Xylo-oligosaccharide (5 g/day) or inulin  
(3 g/day) + xylo-oligosaccharide (1 g/day) 
for 4 weeks

60 healthy adults ↑ butyrate, propionate, and propionate/acetate ratio
↓ acetate

[99]

↓ – decrease; ↑ – increase
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respectively. For the vegan diet donor, butyrate produc-
tion increased 29 and 89 times compared to lactulose 
and raffinose, respectively.

Shabbir et al. [18] reviewed the effects of polyphenols 
on the gut microbiota (Table 7). We know that a num- 
ber of strains (Bifidobacterium ssp., Lactobacillus ssp., 
E. coli, Bacteroides ssp., Eubacterium ssp., Enterococ-
cus caccae, Ruminococcus gauvreauii, etc.) can influ-
ence the bioavailability and bioactivity of polyphenols. 
In turn, polyphenols exhibit antimicrobial activity [111] 
and prebiotic functions suppressing opportunistic strains 
in the intestine.

The use of polyphenols in functional food products 
and dietary supplements is limited due to their low solu-
bility in water, as well as low bioavailability and stability 
(Table 8).

The fact that some substances belong to several clas- 
ses poses a problem of dosing in research. 

According to literature, the bioavailability of poly-
phenols decreases in the following order: phenolic acids >  
isoflavones > flavonols > catechins > flavanones, proan-
thocyanidins > anthocyanins [141, 142]. After oral ad-
ministration, they begin to degrade and transit to various 
organs of the gastrointestinal tract. However, their low 

Table 7 Effects of polyphenols on the gut microbiota [18]

Polyphenols Effect on microbiota Effect on health Model Source
Grapes ↓ ratio Firmicutes/Bacteroidetes,

↑ Akkermansia muciniphila,
↑ Bifidobacteria,
↑ Lactobacillus,
↑ Bacteroides spp.

Lowering blood pressure; 
normalizing lipid profile  
and carbohydrates

Animals  
and humans  
in vivo

[112–114]

Green tea Effect on the ratio Firmicutes/
Bacteroidetes

Lowering weight, glucose,  
total cholesterol, and triglycerides  
in the blood

Animals  
and humans  
in vivo

[115, 116]

Cranberries ↑ Akkermansia,
↑ Parvibacter,
↑ Barnesiella

Preventing inflammatory bowel 
disease, obesity, and insulin 
resistance, normalizing glucose  
and lipid homeostasis; contributing 
to weight loss

Animals  
and humans  
in vivo

[117–120]

Blueberries Effect on Proteobacteria, 
Bifidobacterium, Actinobacteria, 
Adlercreutzia, Flexispira, 
Prevotella, Helicobacter, 
Deferribacteres, and Desulfovibrio

Anti-inflammatory  
and anti-cancerous effect

Animals  
and humans  
in vivo

[121–123]

Orange ↑ Lactobacillus spp.,
↑ Bifidobacterium spp.,
↑ Parabacteroides spp.,
↑ Bacteroides ovatus,
↑ Faecalibacterium prausnitzii,
↑ Ruminococcus spp.,
↑ Akkermansia spp.

Normalizing low-density lipoprotein 
cholesterol, glucose, and insulin 
sensitivity

Humans  
in vivo

[124–126]

Resveratrol ↓ Enterococcus faecalis,
↑ Bifidobacterium,
↑ Lactobacillus

Effect on the intestinal enzymes 
nitroreductase, α-glucosidase, 
α-glucuronidase, β-galactosidase, and 
mucinase

Animals  
in vivo

[127]

Seabuckthorn  
(Hippophaë rhamnoides) 

↑ ratio Firmicutes/Bacteroidetes,
↓ Desulfovibrio

Effect on expression of genes 
involved in lipid metabolism  
and fatty acid oxidation; effect  
on secretion of short-chain fatty acids

Animals  
in vivo

[128]

Allicin ↑ Bacteroidales,
↑ Clostridiales,
↑ Akkermansia,
↓ Firmicutes,
↓ Corynebacteriales, 
↓ Lactobacillales

Reducing weight gain, fat deposition, 
and low-density lipoprotein 
cholesterol; increasing high-
density lipoprotein levels; effect on 
expression of lipid metabolism genes

Animals  
in vivo

[129]

Quercetin ↓ Firmicutes,
↓ Erysipelotrichia,
↓ Bacillus

Anti-inflammatory effect; lowering 
insulin resistance

Animals  
and humans  
in vivo

[130]

Curcumin Effect on Anaerotruncus, 
Exiguobacterium, Helicobacter, 
Papillibacter, Pseudomonas, 
Serratia, and Shewanella

Antidiabetic effect, anti-obesity effect Animals  
in vivo

[131, 132]

↓ – strain reduction/growth inhibition; ↑ – increase in strains
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metabolism in the small intestine and low permeability 
through the intestinal barrier limit their further transit 
into the bloodstream [143].

Nanoencapsulation is an effective means of solving 
the problem described above. Substances such as lipids 
and micelles can be used as nanosystems. Encapsulation 
can improve the stability and solubility of substances, 
protect them from the gastrointestinal tract, and prolong 
their time in the intestine [143–147].

Highly relevant are in vitro studies that explore the ef- 
fect of polyphenols or other functional food ingredients 
on the gut microbiota and the mechanism of their action.

Probiotics and prebiotics improve human health and 
prevent nutrition-related diseases in addition to providing  
the body with certain nutrients [148].

Since food products have a complex composition and  
long shelf life, there is a need to determine effects of food  
additives (sweeteners, colorants, preservatives, antioxi-
dants, etc.) on the gut microbiota. However, such studies 
have been mainly in vitro or on rodents [149–152].

Limiting the caloric intake is believed to be an effec-
tive way to prevent disease and increase life expectancy 
in model organisms [153, 154]. There are a number of di-
ets that can potentially increase people’s life expectancy, 
such as the ketogenic diet, intermittent fasting, or fasting- 
mimicking diets.

The ketogenic diet is low in carbohydrates, moderate  
in protein, and high in fat [43]. This diet leads to the 
development of ketosis, an increased content of ketone 
bodies in the blood.

The demand for the ketogenic diet to support heal- 
thy aging was fueled by the 2017 publications of New- 
man et al. [155] and Roberts et al. [156]. In particular, 
Newman et al. [155] found that the ketogenic diet im-
proved survival, memory, and increases lifespan in aging  
C57BL/6 mice. Roberts et al. [156] reported that this 
diet increased lifespan in adult male C57BL/6 mice, as 
well as preserved motor function, memory, and muscle 
mass in old C57BL/6 mice.

β-hydroxybutyrate (ketone body) carries energy 
from the liver to peripheral tissues during prolonged 

fasting and exercise. It is suggested that it can cause epi-
genetic changes associated with improved health and in-
creased lifespan [153].

Intermittent fasting and fasting-mimicking diets are 
low-calorie, nutrient-rich diets restricting food intake 
for 12 or 24 h [157, 158]. Brandhorst et al. [159] reported 
that intermittent fasting alternated with a nutrient-rich 
diet (every 48 h) in S. cerevisiae extended their lifespan 
and increased their survival under oxidative stress. The 
scientists found that a low-protein and low-calorie diet 
reduced visceral fat, normalized glucose and insulin le- 
vels, as well as increased the number of ketone bodies in 
C57BL/6 mice. They also observed a decrease in tumor 
diseases of the hematopoietic system, a reduced number 
of lesions, and improved cognitive abilities in the mice.  

Clinical studies have shown that a low-calorie and low- 
protein diet lowered glucose and insulin levels, increased 
ketone bodies, and reduced body weight due to a lower 
content of fat alongside increasing muscle mass. The 
diet also reduced the levels of C-reactive protein, which 
is a marker of inflammation and cardiovascular disease. 

Intermittent fasting is believed to have a positive ef-
fect on the gut microbiota, which, in turn, improves the 
expression of a number of genes and the metabolism of 
the host organism. It might be that by providing intesti-
nal rest, the fasting diet improved the diversity of micro-
biota (Table 9), the intestinal barrier function, immune 
and inflammatory responses, stimulating the production 
of short-chain fatty acids [160].

However, there has been no evidence to date of the 
effect of various diets on increasing healthy life expec-
tancy in humans. Clinical studies require a lot of time 
and large numbers of volunteers. They also need to take 
into account environmental, climatic, genetic, and other 
individual factors, as well as circadian rhythms [157].

Today, there is a great need to study the effects of 
functional nutrients, such as plant-based products, on the 
gut microbiota to promote their use in preventing chro- 
nic diseases and increasing healthy life expectancy.

In vitro experimental models for gut microbiota 
studies. The composition of, and changes in, the micro-
biota have been studied in clinical trials, as well as on 
animal models. Nematodes (Caenorhabditis elegans), 
turquoise killifish (Nothobranchius furzeri), naked mole-
rat (Heterocephalus glaber), Drosophila, and rodents 
have been used to modulate the microbiota through die- 
tary interventions to enhance healthy aging [170–173]. 
However, highly relevant are studies that use artificial 
gastrointestinal tract models.

An artificial gastrointestinal tract is a system that 
models different sections of the gastrointestinal tract  
in vitro. The advantages of in vitro models over in vivo 
experiments include their simplicity, low cost, the ab-
sence of ethical restrictions, as well as biological varia- 
tion [174, 175].

In Russia, the first developments of the artificial gastro- 
intestinal tract were patented by the scientists from the 
Don State Technical University [176]. However, they 
largely focused on the microbiota of animals [177]. The 

Table 8 Classification of some polyphenols according  
to the biopharmaceutical classification system (BCS) (sourced 
from Truzzi et al. [133])

Polyphenols Compounds BCS
Hydroxycinnamic acid
Flavonoids

Ferulic acid III [133, 134]
Chlorogenic acid

Flavonoids
Isoflavones

Rutin III [133, 134]
Quercetin I [133, 134],  

II [135], IV [136]
Stilbenes Apigenin I [133], II [137]
Tannins Daizein II [133], IV [138]
Curcuminoids Resveratrol II [133, 138]
Hydroxycinnamic acid Ellagic acid IV [133, 139]
Flavonoids Curcumin II [133], IV [140]

I – high solubility, high permeability; II – low solubility, high per-
meability; III – high solubility, low permeability; IV – low solubility,  
low permeability
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artificial gastrointestinal tract model developed in Rus-
sia was based on the former models, namely the dyna- 
mic gastric model (DGM), the TNO gastro-intestinal 
model (TIM), and the human gastric simulator (HGS).

The first developments of an artificial gastrointestinal 
tract date back to 1993. Figure 2 shows a cell for pancre-
atic digestion presented by Savoie in 1993 [178].

In 1995, Minekus et al. [173] described a multicham-
ber in vitro model that simulated dynamic events occur-
ring in the lumen of the gastrointestinal tract of humans 
and animals with a single-chamber stomach (Fig. 3).

In 1999, Minekus et al. [180] improved their 1995 
model. Their new system combined peristaltic mixing 
to obtain and process physiological concentrations of 
microorganisms, dry matter, and microbial metabolites, 
with the removal of metabolites and water (Fig. 4).

Table 9 Preclinical and clinical studies on the effect of fasting diet on the gut microbiota (sourced from Mohr et al. [161])

Model organism Dietary intervention Results Source
Preclinical studies

db/db male mice, 
16-week-old

Fasting for 24 h every other day for 7 months, 
starting at night

Improved survival with no effect on glycated 
hemoglobin.
↑ Firmicutes,
↓ Bacteroidetes,
↓ Verrucomicrobia,
↑ Lactobacillus,
↑ Oscillospira,
↑ Ruminococcus,
↓ Akkermansia,
↓ Bacteroides,
↓ Bifidobacterium

[162]

Healthy 
C57BL/6J female 
mice, 7-week-old

24 h fasting for 4 weeks ↑ Lactobacillaceae,
↑ Bacteroidaceae,
↑ Prevotellaceae,
↑ Ketone formation, glutathione metabolism, 
enhanced antioxidant pathways

[163]

Lean and obese 
C57BL/6J male 
mice, 4-week-old

Normal chow and HFD treatments for 6 weeks; 
then 4 days of 50% kcal of baseline needs, 
4 days of complete food withdrawal, 4 days  
of 50% kcal of baseline needs

↑ Akkermansia muciniphila,
↑ Lactobacillus

[164]

Healthy 
C57BL/6J male 
mice, 6-week-old

Three groups of mice fasted for 12, 16 a
nd 20 h for 30 days; after fasting, the mice fed 
ad libitum for 1 month

↑ Akkermansia,
↓ Alistipes in the 16-h fasting group

[165]

db/db male mice, 
12-week-old

Fasting for 24 h, then feeding ad libitum  
for 28 days

↑ Lactobacillus,
↑ Odoribacter

[166]

Clinical studies
Healthy adults, 
45.0 ± 9.7 yr

Ramadan (17 h of fasting per day from sunset 
to sunrise over a 29-day period)

↑ Akkermansia muciniphila,
↑ Bacteroides fragilis
↓ Fasting serum glucose and total cholesterol levels

[167]

Healthy adults, 
45.0 ± 9.7 yr

Ramadan (17 h of daily fasting) ↑ Butyricicoccus,
↑ Bacteroides,
↑ Faecalibacterium,
↑ Roseburia,
↑ Allobaculum,
↑ Eubacterium,
↑ Dialister,
↑ Erysipelotrichi

[168]

Healthy male 
adults, age not 
reported

Fasting for 16 h for 25 days ↑ Enrichment of Prevotellaceae and Bacteroideaceae
+ Association between microbial richness and Sirt1 
and circadian gene expression

[169]

↓ – decrease; ↑ – increase

Figure 2 The digestion cell consisting of: outer cylinder (1), 
cover (2), water bath (3), tubular dialysis membrane (4), inner 
cylinder (5), annular hollow ring (9), buffer outlet tube (10), 
buffer idet tube (11), and locking disc (12)
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Figure 3 The model simulating dynamic physiological 
processes occurring in the lumen of the stomach and small 
intestine of humans and monogastric animals (as well as its 
requirements [179]): (a) gastric compartment, (b) duodenal 
compartment, (c) jejunal compartment, (d) ileal compartment, 
(e) basic unit, (f) glass jacket, (g) flexible wall, (h) rotary pump, 
(i) water bath, (j) peristaltic valve-pump, (k) peristaltic pump,  
(l, m) pH electrodes, (n, o) syringe pumps, (p) hollow-fiber device

Aspects proposed by A.C. Langland
a) sequential use of enzymes in physiological amounts,
b) Appropriate pH for the enzymes and addition of relevant co-factors 
such as bile salts and coenzymes,
c) removal of the products of digestion,
d) appropriate mixing at each stage of digestion, 
e) physiological transit times for each step of digestion.
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Figure 4 Schematic presentation of the system to simulate 
conditions in the large intestine: (A) mixing units, (B) pH 
electrode, (C) alkali pump, (D) dialysis pump, (E) dialysis 
light, (F) dialysis circuit with hollow fibers, (G) level sensor, 
(H) water absorption pump, (I) peristaltic valve pump, (J) gas 
outlet with water lock
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The model developed by Minekus was later referred 
to as the TNO Gastro-Intestinal Model (TIM) after the 
Dutch Organization for Applied Scientific Research 
(TNO).

Figure 3 shows the TIM-1 model consisting of four 
compartments representing the stomach, duodenum, jeju- 
num, and ileum.

Figure 4 shows the TinyTIM or TIM-2 model, a simp- 
lified version of TIM-1. It was developed to increase the 
throughput compared to TIM-1 and was more suitable 
for studies that do not require separate intestinal stages. 
In 2015, Minekus et al. developed the TIM-agc model 
simulating the shape and motility of the stomach in a 
more realistic way [181, 182].

In 2012, the Dynamic Gastric Model (DGM) was 
developed at the Institute of Food Research (Norwich, 
UK) [183]. The DGM combined the physical and bio-
chemical characteristics of the human stomach over 
time (Fig. 5).

The DGM has a wide range of applications. So far, it 
has been used to study the bioavailability of nutrients, 
structural changes of food matrices during digestion, and  
the degradation and dissolution of various drugs [184]. 

In 2010, Kong and Singh [185] developed a human 
gastric simulator (HGS) (Figs. 6–8).

The HGS is used to study the biotransformation of 
food components and gastric contents during digestion. 
It has also been used to determine the influence of physio- 
logical conditions (acid secretion, enzymes, and gastric 
contractile force) on the kinetics of food breakdown and 
nutrient release [186]. 

In 2014, Ménard et al. [187] contributed to the deve- 
lopment of the dynamic digestive intestinal gastrointes-
tinal system (DIDGI) (Fig. 9).

The DIDGI consists of two or three consecutive com-
partments simulating the stomach, small intestine, and 
the ileum. Today, this system is used to study the diges-
tion of milk, milk gels and emulsions, and cheese. It is 
also used to study the survival of microorganisms in the 
gastrointestinal tract [188]. 

There are other systems in addition to the three arti-
ficial gastrointestinal tract systems described above. For 
example, Peeters et al. [189] carried out in vitro biotrans-
formation using gastrointestinal enzymes and fecal mic- 
robiota. Breynaert et al. [190] used an in vitro conti- 
nuous flow dialysis model with a colon phase to study 
the availability and metabolism of polyphenolic compo- 
unds (Fig. 10).

Gumienna et al. [191] studied changes in wine poly-
phenols during in vitro digestion. For this, they devised 
an in vitro digestion model in a glass bioreactor (Fig. 11).

The only common limitation of all the artificial gastro- 
intestinal tracts is that they do not interact with the host 
organism, which is beyond in vitro experiments. These ar- 
tificial models have high potential for assessing the sa- 
fety of food products, antibiotics, and functional food  
ingredients, as well as their impact on microbiota and its 
metabolism. They can also be used to study the biotrans-
formation of products.
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Figure 5 Schematic presentation of the dynamic gastric model designed by Wickham et al. [183]

Perforated hoop for enzyme and acid delivery
Rate regulated by pH and volume

Heated water jacket 37°C

Valve assembly allows reflux and degassing

Antrum

Pressure pulses 3 per minute
Raius of curvature and volume dictates depth

Outlet. Samples ejected at timed intervals to duodenum. Regulated  
by gastric retention time of the meal (size energy value and composition)
Elastic annulus moves through "antral" contents to create the shear/rellux  
to break down food
Dead volume creates selective sieving. No crushing action

Barrel drives elastic annulus up and down 3 per minute
Displacement rate and limits chosen to create shear as seen in vivo using 
agar beads

Piston
Filling/Emptying
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Flexible 
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Figure 8 The pulley system and rollers: (1) latex chamber, (2) belt, (3) roller, (4) pulley, (5) right angle gear, (6) Love-Joy joint,  
(7) shaft [185]
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Figure 7 Top view of the human gastric simulator: (1) latex 
chamber with mesh net, (2) plastic tubing for secretion,  
(3) roller, (4) motor, (5) fan, (6) drive shaft, (7) right angle 
gear, (8) light bulb [185]
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Figure 6 The human gastric simulator: (1) motor,  
(2) gastric compartment, (3) mesh bag, (4) simulating 
secretion tubes, (5) Teflon roller set, (6) conveying belt,  
(7) insulated chamber [185]
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Figure 11 The gastrointestinal tract model consisting of the stomach, small intestine, and colon stages (sourced  
from Gumienna et al. [191]) 
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Figure 9 The DIDGI system developed by Ménard et al. [187] 
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Microbiota studies are important for devising diets 
and functional foods containing polyphenols, probiotics, 
and prebiotics to prevent chronic diseases and maintain 
a healthy lifespan.
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