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Abstract: 
Accurate citrus fruit yield and estimation is of utmost importance for precise agricultural management. Unmanned aerial 
vehicle (UAV) remote-sensing systems present a compelling solution to this problem. These systems capture remote-sensing 
imagery with both high temporal and spatial resolution, thus empowering farmers with valuable insights for better decision-
making. This research assessed the potential application of UAV imagery combined with the YOLOv7 object detection model 
for the precise estimation of citrus yield. 
Images of citrus trees were captured in their natural field setting using a quadcopter-mounted UAV camera. Data augmentation 
techniques were applied to enhance the dataset diversity; the original YOLOv7 architecture and training parameters were 
modified to improve the model’s accuracy in detecting citrus fruits. 
The test results demonstrated commendable performance, with a precision of 96%, a recall of 100%, and an F1-score of 97.95%. 
The correlation between the fruit numbers recognized by the algorithm and the actual fruit numbers from 20 sample trees 
provided the coefficient R2 of 0.98. 
The strong positive correlation confirmed both the accuracy of the algorithm and the validity of the approach in identifying and 
quantifying citrus fruits on sample trees.
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INTRODUCTION
Crop yield estimation plays a crucial role in effec-

tive crop management, enabling farmers to make in-
formed decisions regarding harvesting, transportation, 
storage, and marketing of their produce. Traditional 
fruit counting methods, while commonly used, are in-
herently labor-intensive, time-consuming, and prone to 
human error; moreover, they often give a higher margin 
of error than expected [1]. Consequently, fruit farming 
needs new efficient and automated approaches to crop 
yield estimation. Automated methods reduce the burden 
of manual labor while enhancing the accuracy and reli-
ability of yield forecasts. 

The recent progress in computer technology, camera 
capabilities, and image analysis have given rise to a di-
verse array of fruit count methods [2]. 

Numerous studies feature image processing tech-
niques and machine learning algorithms in the domain 
of fruit detection and recognition. Sengupta & Lee har-
nessed a combination of support vector machines, Can-
ny edge detection, Hough transform, and scale-invariant 
feature transform, along with the majority voting al-
gorithm, to effectively discern citrus fruits from the 
background [3]. Maldonado & Barbosa based their appro- 
ach on the extraction of relevant features from green 
fruits [4]. The method consisted of a series of steps in-
cluding color model conversion, thresholding, histo-
gram equalization, spatial filtering with Laplace and 
Sobel operators, and Gaussian blur. Zhao et al. con-
tributed to the field by applying the sum of the absolute 
transformed difference method to the detection of im-
mature green citrus fruits [5]. The proposed technique 
effectively identified fruit pixels through the transfor-
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mative process. A subsequent support vector machine 
classifier discerned and eliminated false positives, the- 
reby refining the detection accuracy. 

Dorj et al. introduced a novel algorithm aimed at 
automating fruit detection [6]. This algorithm encom-
passed a series of pivotal steps including the conversion 
of the RGB (red, green, blue) color space to the hue- 
saturation-value color space, threshold color detection, 
fruit segmentation, noise reduction, morphological ope- 
rations, labeling, feature extraction, and classification. 

Liu et al. devised a distinctive approach centered 
on the Cr-Cb color coordinates [7]. They established a 
multi-elliptical boundary model capable of detecting 
both citrus fruits and tree trunks in natural light set-
tings. Another contribution by Liu et al. introduced a 
recognition methodology based on regional specifics [8].  
The approach hinged on a feature mapping table, which 
effectively reduced the dimensionality of feature vec-
tors while concurrently enabling the segmentation of cit- 
rus fruits, branches, and leaves. 

Xu et al. pursued the segmentation of target citrus 
regions within the YUV color space by applying the 
Otsu adaptive threshold algorithm [9]. Their study in-
corporated a distinctive random ring method which 
used a greedy algorithm to recognize multiple citrus 
targets. 

In a recent study, Zhang et al. introduced a pionee- 
ring algorithm that enabled the detection and quantifica-
tion of citrus fruits within orchards [10]. The proposed 
methodology leveraged the LAB color space in tandem 
with the Hough circle transform. While image proces- 
sing methods demonstrated proficiency in various fruit 
detection tasks, they encountered challenges when dea- 
ling with complex situations, such as occlusion, over-
lapping objects, and varied illumination [11]. 

Furthermore, the application of machine learning 
techniques to large-scale yield estimation often leads 
to suboptimal outcomes due to their constrained ability  
to generalize [12]. 

In recent years, there has been a growing interest in 
using object detection algorithms based on deep lear- 
ning as promising tools for fruit detection and yield es-
timation. These algorithms have remarkable advanced 
generalization capabilities, which are categorized into 
one-stage and two-stage algorithms [13–15]. Typically,  
a one-stage algorithm offers faster inference speeds 
while a two-stage algorithm achieves better accura-
cy despite its relatively slower processing pace. The 
one-stage approach to target detection involves a con-
volutional neural network (CNN) to directly extract 
predictions for both the target class and its correspond-
ing location within the input image. Instances of this 
methodology include the Single Shot MultiBox Detector 
(SSD) and the You Only Look Once (YOLO) algorithm 
represented by YOLOv1, YOLOv2, YOLOv3, YOLOv4, 
YOLOv5, YOLOx, and YOLOv7 [16–23]. As for the 
two-stage detection approach, the initial step employs 
a region proposal mechanism to sift through potential 
candidate regions. This process facilitates the acquisi-

tion of the region of interest, thus enabling the subse-
quent stages to engage in precise object localization and 
border regression prediction within the chosen region. 
Prominent exemplars of the two-stage detection stra- 
tegy encompass such methods as Fast R-CNN, Faster 
R-CNN, and Mask R-CNN [24–26].

A cohort of researchers have contributed to the do-
main of fruit detection by employing deep learning 
models for object detection. The following researchers  
focused on the one-stage algorithm, e.g., improved 
YOLO models. Xu et al. introduced HPL-YOLOv4, an 
innovative approach for detecting citrus fruits [27]. 
This method employed GhostNet as its foundational 
backbone network and incorporated a DBM module 
with depthwise separable convolution and the Mish 
activation function, replacing the CBL module in the 
neck segment. The enhancements included integrating  
the ECA channel attention mechanism and using the 
soft DIoU-NMS technique to improve detection in over-
lapping or occluded situations. Yang et al. presented 
BCoYOLOv5, a novel network model for identifying 
and detecting fruit targets in orchards [28]. The mo- 
del was based on YOLOv5s architecture and integrated 
a bidirectional cross attention mechanism for enhanced 
performance. Lai et al. introduced a target detection 
model based on an enhanced YOLOv7 variant, spe-
cifically designed for accurate pineapple detection in 
field environments [29]. The model incorporated the 
SimAM attention mechanism, refined the max-pooling 
convolution architecture, and replaced the conventio- 
nal NMS with the soft-NMS variant to address detec- 
tion challenges posed by occlusion and overlapping. 
Chen et al. proposed Citrus-YOLOv7 for citrus detec-
tion in orchards [30]. This model enhanced the YOLOv7 
architecture with a specialized small object detection 
layer, lightweight convolution operations, and a convo-
lutional block attention module. Yang et al. improved 
YOLOv7 to enhance apple fruit target recognition in 
scenarios with dense fruit clusters, occlusion, and over-
lapping [31]. They integrated a MobileOne module for 
backbone network establishment and used an altered 
image fusion strategy; this novel recognition algorithm 
also had an auxiliary detection head. 

Our main objective was to investigate the poten-
tial application of unmanned aerial vehicle (UAV) 
remote-sensing technology and the YOLOv7 object de-
tection model for citrus fruit yield estimation. Our solu-
tion will provide farmers with a precise and efficient 
alternative to traditional manual fruit count, leveraging 
cutting-edge technology to enhance decision-making in 
crop management.

STUDY OBJECTS AND METHODS
Study area. The research centered on the use of the 

Maroc Late variety of citrus trees in orchard environ-
ment. We obtained the original images of these citrus 
trees from an orchard located in the Beni Mellal-Khe- 
nifra region, Morocco. This region significantly con-
tributes to citrus cultivation, accounting for 14% of 
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the country’s total citrus farming. The region allocates 
a substantial 17 426 ha to citrus cultivation, with the  
Maroc Late variety responsible for 23% of the citrus 
crops [32]. The central coordinates of the orchard un-
der study are 32°19’28’’N and 6°29’36’’W (Fig. 1). The 
orchard, identified by parcel number 20 050, was estab-
lished on August 18, 2018: it covered an area of 6.11 ha 
and included a total of 2546 citrus plants. In the stan-
dard planting configuration, the rows of citrus trees 
were separated by a 6-m gap, with each tree spaced ap-
proximately 4 m apart.

Sampling citrus trees. The initial tree sampling is 
crucial before capturing images in the orchard. This 
process involves selecting a few representative samples 
from the entire population. These samples should be ro-
bust and comprehensive enough to represent the entire 
orchard. This approach provides a more accurate esti-
mation of the overall yield, thus securing a more precise 
assessment of the productivity of a particular orchard. 
This study employed two sampling methods. 

The first method was random sampling: it provided 
a dataset to develop a deep learning model specifically 
targeting citrus fruit detection. The importance of em-
ploying random sampling comes from its ability to un-
biasedly select samples from a diverse population. For 
this research, we selected 200 trees at random to be in-
cluded in the dataset. The size of the dataset plays a pivo- 
tal role, as larger datasets enhance the capacity of deep 
learning models to recognize more complex patterns, 
thereby improving their generalization capabilities. 

The second sampling method estimated the number 
of fruits on each citrus tree. We used the traditional 
method of manual counting to determine the total fruit 
count across a sample of 20 citrus trees. This sampling 
relied on the geographical location of the trees in the or-
chard: it involved four trees in each of the four direc-

tions (east, west, north, and south) plus another group 
of four trees in the middle of the orchard. The actual 
fruit count and the recognized fruit count generated by 
the algorithm were then paired for each of these trees. 
Utilizing a linear fitting method, we established a direct 
correlation between the observed fruit counts and the 
fruit counts identified by the algorithm created.

Data acquisition and UAV flights. The citrus trees 
designated for sampling were photographed on March 
10 and 15, 2023, during their ripening season. We took 
the images at various times throughout the day – mor- 
ning, noon, and afternoon – in the field under natural 
lighting conditions. The weather conditions during the 
image capture were ideal for UAV flights, with a wind 
speed of 9 km/h and a clear, cloudless sky.

This procedure involved the DJI Phantom 4 Multi- 
spectral (P4M) Unmanned aerial vehicle (UAV) equip- 
ped with a suite of imaging sensors. These sensors in-
cluded five multispectral sensors representing the blue, 
green, red, red-edge, and near-infrared bands, along 
with one RGB sensor. Table 1 demonstrates the parame-
ters of the sensors. 

The DJI Pilot application served as the control inter-
face for the P4M-UAV during the data collection process 
(Fig. 2). We employed manual control mode to navigate 
the UAV, with the camera angle adjusted to 45°. For each 
sampling tree, both right-side and left-side images were 
captured from a consistent distance of 4 m. The flight 

Table 1 Imaging system specifications

Parameter Value
Sensor size, mm 4.87×3.96
Image dimensions, pixels 1600×1300
Focal length, mm 5.74 mm 
Shutter type Global 2 MP shutter

Figure 1 Citrus orchard: geographic location 
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altitude was maintained at 4 m above ground level, as 
illustrated in Fig. 3. Consequently, the images obtained 
boasted a resolution of 0.21 cm/pixel.

We chose manual control instead of automated one to 
image the trees with a DJI Phantom 4 (P4M) UAV beca- 
use we needed an accurate and focused data collection. 
Manual control allows for a high degree of operator enga- 
gement, enabling the UAV to maneuver around the selec- 
ted trees effectively and flexibly. This approach made it 
possible to take pictures from both the left and right side 
at a constant height and distance. It provided a high con-
trol level, excellent data quality, and thorough coverage.

In the scope of this research, we had several reasons 
to use RGB sensor-captured images to develop a deep 
learning model focused on citrus fruit. Firstly, the RGB 

images were to be integrated with the deep learning 
model. As input data, RGB images were more effective 
in helping the model to identify and classify citrus fruits 
based on their color and other visual characteristics. 
Secondly, RGB images streamlined the computational 
and logistical complexities associated with the develop-
ment of deep learning models, as opposed to multispec-
tral images. Lastly, citrus fruits stood out clearly in RGB 
imagery, as illustrated in Fig. 4, thus facilitating the  
labeling and data verification, which, in turn, enhanced 
the overall reliability of the research outcomes.

Data preprocessing. In this study, we applied vari- 
ous preprocessing techniques to the original images.  
Initially, each original image underwent a cropping 
operation to create sub-images with dimensions of 

Figure 2 DJI Pilot application interface: examples of image capture locations (white points) and flight path (green line)

Figure 3 Phantom 4 (P4M) UAV imaging: distance from the tree is 4 m; altitude above ground level is 4 m
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400×433 pixels. This action reduced the background 
noise and directed the focus towards the areas of par-
ticular interest. Consequently, we conducted an elimina-
tion process to filter out images devoid of citrus fruits, a 
measure taken to enhance the precision of the model by 
eliminating irrelevant data.

The sub-images in question manifested four distinct 
categories of interference: overlap, occlusion, front ligh- 
ting, and back lighting. Figure 5 illustrates these types of  
interference. Overlap interference became evident when  
multiple citrus fruits partially obscure each other in an 
image. Occlusion interference arose when segments of a 
citrus fruit were concealed or shrouded by branches and 
leaves. Front lighting interference occurred when the il-
lumination on citrus fruits grew intense from the frontal 
direction. Backlighting interference took place when the 
light source (the sun) was behind the citrus fruits, cau- 
sing the fruits to appear as dark silhouettes.

Subsequently, we performed a manual annotation of 
a total of 1804 sub-images, using the LabelImg software 
(Fig. 6) to delineate the bounding boxes encompassing 
citrus fruits within each sub-image. After that, the pro-
gram generated .txt format files with these annotations.

The dataset was further partitioned into three dis-
tinct subsets: a training set, a test set, and a validation 
set, with a distribution ratio of 70/20/10 (Table 2). The 
training set was comprised of 1263 sub-images with a 

total of 8185 citrus fruits. Meanwhile, the test set en-
compassed 361 sub-images, featuring 1253 citrus fruits, 
and the validation set comprised 130 sub-images with a 
combined total of 747 citrus fruits.

Data augmentation. We used a range of data aug-
mentation strategies to enhance the diversity and size 
of the dataset. These strategies encompassed morpho-
logical operations, including angle rotation, saturation 
adjustment, image flipping (both vertically and horizon- 
tally), and translation. The mosaic data enhancement 
method involved the amalgamation of four defect ima- 
ges with random scaling, random clipping, and random 
layout adjustments: it bolstered the classification per-
formance of the model. We also appealed to the mix-up 
data enhancement method to create mixed samples by 
proportionally interpolating two images. Additionally, 
we explored the color space conversion, modifications in 
picture hue, saturation, and exposure. The primary ob-
jective behind the incorporation of these data augmen-
tation techniques was to curb the overfitting tendencies 
and bolster the model’s capacity for generalization. 

Object detection framework. YOLOv7 is a com-
puter vision model within the YOLO (You Only Look 
Once) family of object detection models, renowned for 
its rapid detection, high precision, and user-friendly 
nature in both training and deployment. The YOLOv7 
model architecture comprises five primary compo-

Figure 4 Exemplar citrus tree images captured by Phantom 4 Multispectral (P4M) UAV: (a) RGB (red, green, blue) composite;  
(b) blue channel; (c) green channel; (d) red channel; (e) red-edge channel; (f) near-infrared image

                                   a                                              b                                             c                                              d

                                                                                  e                                              f

                                           a                                        b                                         c                                        d

Figure 5 Instances of sub-images in the dataset: back lighting (a), front lighting (b), occlusion (c), and overlap (d)
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nents: inputs, backbone network, neck, head, and loss 
function (Fig. 7). In this study, we applied various mo- 
difications to the original YOLOv7 architecture and 
training parameters to enhance its accuracy in detecting  
citrus fruits.

The input layer incorporated three techniques to 
enhance the quality of the data used for citrus fruit de-
tection, i.e., mosaic data augmentation, adaptive anchor 
box calculation, and adaptive image scaling.

In this research, the backbone network played a cru-
cial role in the feature extraction process. It comprised 

several modules, including BConv convolution layers, 
E-ELAN convolution layers, and MPConv convolution 
layers [23]. The BConv module, or CBS layer, consisted  
of a convolution layer, batch normalization (BN) layer,  
and SiLU activation function. It was specifically desig- 
ned to extract image features at various scales (Fig. 8). 

We conducted a series of experiments to explore 
different modifications in the backbone network, with 
a focus on the convolution (Conv) layer. The objective 
was to enhance the model’s performance in citrus fruit 
detection. The incorporation of a double CBS (Conv-

Table 2 Dataset structure

Data set Ratio, % Number of sub-images Number of fruits
Training se 70 1419 8185
Test set 20 361 1253
Validation set 10 180 747
Total 100 1804 10 185

Figure 6 Manual annotation with green rectangles

Figure 7 YOLOv7 improved architecture
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BN-SELU-Conv-BN-SiLU) layer instead of a single 
CBS layer was the most successful change of all modi- 
fications tested. Additionally, we replaced the SiLU 
(sigmoid linear unit) activation function in the first layer 
with SELU, i.e., scaled exponential linear unit (Fig. 9).

The neck module in the YOLOv7 model architec-
ture played a crucial role in feature fusion and feature 
pyramids. It served as a bridge between the backbone 
network and the head module, facilitating the integra-
tion of features from different network layers. The neck 
module consisted of two components: the feature pyra-
mid network module and the path aggregation network 
module. These modules were responsible for merging 
and harmonizing the features extracted from multiple 
layers of the backbone network.

The head module in the YOLOv7 model architecture 
generated the final detections and predicted the locations 
and classes of objects within the input image. It was the 
last component in the YOLOv7 network before the out-
put. Within the head module, the features that had been 
combined and mixed in the neck module passed through 
a series of layers that performed the necessary computa-
tions for object detection. These layers analyzed the fea-
ture representations, as well as made predictions about 
the bounding boxes and associated object classes. Addi-
tionally, the convolutional architecture was updated with 
the improved CBS to align the head architecture with 
the backbone architecture and enable the prediction of 
bounding boxes for small objects.

As for the loss function, YOLOv7 utilized a loss 
calculation method that consisted of three main com-
ponents: object confidence loss, classification loss, and 
coordinate loss. These loss functions were important 
for training the model and optimizing its performance. 
The object confidence loss and classification loss in 
YOLOv7 were computed using the binary cross-entropy 
loss function. The binary cross-entropy loss measured 
the dissimilarity between the predicted probabilities 
and the ground truth labels for both object presence and 
class predictions. The coordinate loss in YOLOv7 em-
ployed the CIoU (complete intersection over union) loss 
function [33]. The CIoU loss took into account various 
factors, including the overlapping area, center distance, 

and aspect ratio, to measure the localization accuracy  
of the predicted bounding boxes.

Evaluation metrics. In this work, we used several 
metrics to assess the YOLOv7 performance, i.e., preci-
sion (P), recall, and F1-score (F1):
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where the true positive (TP) was the number of images 
that the developed model correctly identified as contai- 
ning citrus fruits; the false positive (FP) was the num- 
ber of images that the model incorrectly identified as 
containing citrus fruits when they did not; the false ne- 
gative (FN) was the number of images that the mo- 
del incorrectly identifies as not containing citrus fruits 
when they did.

We used another formula to calculate the percentage 
of accurate citrus fruit count provided by the YOLOv7 
model compared to the actual number of citrus fruits in 
the dataset:
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where the number of citrus fruits counted by YOLOv7 
was the count of citrus fruits detected by the YOLOv7 
model; the actual fruit number was the real, or ground 
truth, count of citrus fruits in the dataset.

Experimental details. The network model was 
trained and evaluated on a dedicated laboratory work-
station. It included the following hardware compo- 
nents: an Intel i9 13th Gen 13900K processor, an Nvidia 
RTX 4090 graphics card, 128 GB of 3200 MHz RAM, 
and a 2 TB Gen 4 SSD for storage. The operating sys-
tem in use was a 64-bit professional edition of Win- 

Figure 8 CBS Layer

 

Figure 9 Improved CBS layer
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dows 10. For deep learning tasks, we used a PyTorch 2 
with CUDA 11 as a framework; Python 3.8 served as a 
programming language. Throughout the training pro-
cess, the input images were maintained at a resolution 
of 640×640 pixels.

We used the YOLO Evolve hyperparameter optimi-
zation method to determine the optimal hyperparame-
ters for the YOLOv7 model. This approach involved 10 
trials, each comprising 30 epochs, to assess various hy-
perparameter combinations and identify the most effec-
tive configuration. The relevant hyperparameter values 
were defined as follows: the model’s initial learning rate 
was set to 0.129, the learning rate momentum was 0.892, 
the Adam algorithm served as optimizer, and the weight 
decay value was 0.00052. The training batch size was 
32 while the total number of training epochs was 500. 

Additionally, we applied transfer learning by utilizing 
the pre-trained weights from ‘yolov7_training.pt,’ a 
standard YOLOv7 model previously trained on the MS 
COCO dataset.

RESULTS AND DISCUSSION
Training results. Figures 10, 11, 12, 13, and 14 pro-

vide an overview of various training metrics, including 
box loss, objective loss, precision, recall, and mAP0.5 va- 
lues tracked after each training epoch. The box loss as-
sessed the model’s accuracy in locating the center of a 
citrus fruit within an image and drawing a bounding 
box around it. The objectness gauged the likelihood 
that a given image region contained the object of inte- 
rest during detection. Over the training epochs, both box 
loss and objectness exhibited fluctuations and an overall  

Figure 11 Plot of objectness loss for the training setFigure 10 Plot of box loss for the training set
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consistent decrease, indicating the progresses of the 
improved model. In the initial epochs (approximately,  
epochs 0–10), a rapid decrease signified quick learning. 
Subsequently, stability with fluctuations might have ap-
peared due to varied data augmentation presenting both 
complex and simple instances. Towards the end of trai- 
ning (e.g., after epoch 400), stabilization signified that the 
model reached its learning capacity from the given data. 

The metrics, including precision, recall, and mAP0.5 va- 
lues, demonstrated fluctuations across epochs with an  
overall upward trend, reflecting improved model perfor-
mance over training. In the early epochs (e.g., epochs 0– 
10), these metrics were relatively low but displayed sig-
nificant improvement as the model learned data patterns. 
Around epochs 10–50, the rate of improvement slowed 
down as the model approached a better data representa-
tion. Throughout training, occasional fluctuations might 

be attributed to data augmentation, offering challen- 
ging and straightforward examples. A period of relative 
stability in precision from epochs 50–150 suggested a 
performance plateau given the architecture and data. 
Towards the end (epochs 400–500), a slower but conti- 
nued improvement highlighted the model’s refinement of 
learned features.

Test results. Figure 15 presents the confusion ma-
trix of the test results, i.e., a critical visual represen-
tation of the deep learning model’s performance in 
detecting citrus fruits amidst background objects. The 
model excelled in accurate identification, achieving a 
96% true positive rate, but still exhibited a minor short-
coming with a 4% false positive rate. On the other hand, 
it effectively identified the background as not contai- 
ning citrus fruits with a true negative rate of 100%. Fi- 
gure 16 displays a visualization of selected output from 
YOLOv7 on several test images from the dataset.

Utilizing YOLOv7 for fruit detection yielded good 
outcomes, underscoring the model’s effectiveness. The 
achieved results included the precision of 96%, a recall 
of 100%, and an F1-score of 97.95%. Such a high level 
of detection accuracy could be attributed to a range of 
strategic approaches, i.e., various modifications to the 
original YOLOv7 architecture, data augmentation, the 
careful selection of hyperparameters through the YOLO 
Evolve method, and the application of transfer learning. 
Expanding the dataset with additional images of citrus 
fruits collected from various farms and at different time 
intervals could prove advantageous to further enhance 
the performance. 

However, despite these optimizations, the model may 
not attain perfect accuracy due to potential interferences, 
e.g., leaves and branches obstructing the view. The algo-
rithm relied on a combination of parameters, including 
color, texture, and various other features. Additionally, 
the overall detection performance relied on the image 
quality, which, in its turn, depended on such factors as 
UAV camera specifications, the time of image capture, 
lighting conditions, the altitude of the UAV flight, and 
the horizontal distance between the UAV and the tree.

Yield estimation results. Table 3 illustrates the 
results of citrus detection achieved by the enhanced 
YOLOv7 model, conducted across a sample of 20 dis-
tinct trees. For each tree, we determined the accuracy 
rate in estimating the yield. The highest accuracy ob-
served was 94% while the lowest was 74%; the overall 
average across all trees stood at 87.68%. The improved 
YOLOv7 model recorded a lower count of citrus fruits 
compared to the actual count. This disparity between 
the manual counting and the proposed algorithm could 
be attributed to several factors, including complete oc-
clusion, shadows, and viewing angles. Manual counting 
involved capturing fruit numbers from multiple angles 
whereas the algorithm relied on images taken from two 
sides of the tree. We performed a regression analysis 
to assess the correlation between the manual count and 
the count generated by YOLOv7 for 20 trees (Fig. 17). 
The resulting regression equation was y = 1.10·x + 3.27. 

Figure 15 Confusion matrix of the test results

 

Figure 16 Visualizing citrus fruit detection performance  
in test dataset images
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It was accompanied by a high correlation coefficient  
(R2 = 0.98), which signified a robust correlation within 
the dataset.

Evaluation. Table 4 compares the proposed ap-
proach with previous studies in terms of the algorithm, 
precision, recall, and F1-score. 

In this comparative analysis, we assessed the perfor-
mance of our approach against the methodologies em-
ployed in previous studies that utilized various YOLO 
(You Only Look Once) variants for citrus fruit detec-
tion. Xu et al. used HPL-YOLOv4 to achieve the preci-
sion, recall, and F1 score metrics of 93.45, 94.30, and 
94.00%, respectively [27]. Yang et al., who used BCo-

YOLOv5, reported a higher recall at 97.11%, albeit with 
a slightly lower precision and an F1-score of 89.15 and 
92.96% [28]. Chen et al. introduced Citrus-YOLOv7: 
they showcased a well-balanced precision of 94.25%, a 
recall of 93.37%, and an F1-score of 93.81% [30]. Our 
resalts proved remarkable with the precision of 96%, a 
recall of 100%, and an F1-score of 97.95%. These fin- 
dings suggest that the method described in this paper 
may represent a significant advancement in enhancing 
the accuracy of citrus fruit detection compared to earlier 
methodologies in this field.

CONCLUSION
In this study, we used unmanned aerial vehicle 

(UAV) RGB (red, green, blue) remote-sensing imagery 
and the YOLOv7 object detection model to estimate 
citrus fruit yield. The innovative modifications to the 
YOLOv7 model included the introduction of a double 
CBS (Conv-BN-SELU-Conv-BN-SiLU) layer and the 
adoption of the SELU activation function. They made it 
possible to achieve commendable results in citrus fruit 
detection. The UAV RGB remote-sensing technology 
enhanced the capabilities of the deep learning model by 
providing high-resolution, real-time aerial imagery, and, 
eventually, a more comprehensive assessment of citrus 
orchards. Hyperparameter optimization with the YOLO 
Evolve method further improved the performance, re-
sulting in high precision, recall, and F1-score values. 

Our findings demonstrated the potential of deep 
learning object detection models in addressing the chal-
lenges associated with traditional fruit counting meth-
ods. Cutting-edge technologies, e.g., UAVs, may reduce 
the labor-intensive and error-prone nature of manual 
fruit counting, thus providing accurate and efficient es-
timates for citrus fruit yield. 

Our algorithm proved effective in identifying and 
quantifying citrus fruits, as evidenced by the strong pos-
itive correlation between the recognized fruit numbers 
and the actual fruit numbers from a sample of 20 trees. 
Our algorithm, combined with UAV RGB remote-sen- 
sing, can assist farmers in making informed decisions 
about crop management. 

While the results are promising, we have to ac-
knowledge certain limitations, such as occlusion, that 
may affect detection accuracy. Further research could 
expand the dataset to encompass diverse conditions and 
varieties of citrus fruits, potentially enhancing the mo- 
del’s robustness.

Table 3 Citrus fruit count results for 20 trees

Tree 
number

Actual fruit 
number

Fruit count  
by YOLOv7

Precision 
rate in yield 
estimation

1 52 46 88.46
2 125 113 90.40
3 74 69 93.24
4 131 115 87.70
5 88 74 84.09
6 81 60 74.07
7 140 121 86.42
8 129 109 84.49
9 52 49 94.23
10 61 51 ,83.60
11 83 74 89.15
12 129 114 88.37
13 141 127 90.07
14 86 79 91.86
15 104 93 89.42
16 72 57 79.16
17 66 59 89.39
18 133 120 90.22
19 89 81 91.01
20 68 60 88.23

Table 4 Comparative analysis of object detection model 
performances: precision, recall, and F1-score

Reference Model Precision, 
%

Recall, 
%

F1-score, 
%

[27] HPL-YOLOv4 93.45 94.30 94.00

[28] BCo-YOLOv5 89.15 97.11 92.96
[30] Citrus-YOLOv7 94.25 93.37 93.81
This work YOLOv7 96.00 100.00 97.95

Figure 17 Regression analysis: actual number of citrus fruits 
vs. citrus fruits detected by the YOLOv7 model

The number of orange fruits detected by the YOLOv7 model
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